Postconditioned Symbolic Execution

Qiuping Yi'?, Zijiang Yang?, Shengjian Guo*, Chao Wang*, Jian Liu', Chen Zhao'

! National Engineering Research Center for Fundamental Software, Institute of Software, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Department of Computer Science, Western Michigan University, Kalamazoo, Michigan, USA
4 Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, USA

Symbolic execution is emerging as a powerful technique for
generating test inputs systematically to achieve exhaustive path
coverage of a bounded depth. However, its practical use is often
limited by path explosion because the number of paths of a
program can be exponential in the number of branch conditions
encountered during the execution. To mitigate the path explo-
sion problem, we propose a new redundancy removal method
called postconditioned symbolic execution. At each branching
location, in addition to determine whether a particular branch
is feasible as in traditional symbolic execution, our approach
checks whether the branch is subsumed by previous explorations.
This is enabled by summarizing previously explored paths by
weakest precondition computations. Postconditioned symbolic
execution can identify path suffixes shared by multiple runs and
eliminate them during test generation when they are redundant.
Pruning away such redundant paths can lead to a potentially
exponential reduction in the number of explored paths. We have
implemented our method in the symbolic execution engine KLEE
and conducted experiments on a large set programs from the
GNU Coreutils suite. Our results confirm that redundancy due
to common path suffix is both abundant and widespread in real-
world applications.

I. INTRODUCTION

Dynamic symbolic execution based test input generation
has emerged as a popular technique for testing real-world
applications written in full-fledged programming languages
such as C/C++ and Java [1], [2], [3], [4], [5], [6]. The method
performs concrete analysis as well as symbolic analysis of the
program simultaneously, often in an execution environment
that accurately models the system calls and external libraries.
The symbolic analysis is conducted by analyzing each exe-
cution path precisely, i.e., encoding the path condition as a
quantifier-free first-order logic formula and then deciding the
formula with a SAT or SMT solver. When a path condition
is satisfiable, the solver returns a test input that can steer the
program execution along this path. Due to its capability of
handling real applications in their native execution environ-
ments, dynamic symbolic execution has been quite successful
in practical settings—for a survey of the recent tools, see
Pasareanu et al. [7].

However, a major hurdle that prevents symbolic execution
from getting even wider application is path explosion. That is,
the number of paths of a program can be exponential in the

Corresponding author: Zijiang Yang (email: zijiang.yang @wmich.edu; web:
www.cs.wmich.edu/~zijiang).

number of branch conditions encountered during the execu-
tion. Even for a medium-size program and a small bound for
the execution depth, exhaustively covering all possible paths
can be extremely expensive. Many efforts have been made
to mitigate the path explosion problem. One of them, which
has been quite effective in practice, is called preconditioned
symbolic execution [8], where a predefined constraint 11, is
passed as an additional parameter in addition to the program
under test. Preconditioned symbolic execution only descends
into program branches that satisfy IL,,..., with the net effect of
pruning away the subsequent steps of unsatisfied branches. By
leveraging the constraint, preconditioned symbolic execution
effectively reduces the search space. In contrast, our work aims
at eliminating redundant paths without reducing the search
space.

We propose a new method called postconditioned symbolic
execution to mitigate path explosion, by identifying and then
eliminating redundant path suffixes encountered during sym-
bolic execution. Our method is based on the observation that
many common path suffixes are shared among different test
runs, and repeatedly exploring these common path suffixes
is a main reason for path explosion. Postconditioned symbolic
execution associates each program location [with a postcondi-
tion that summarizes the explored path suffixes starting from .
During the iterative test generation process, new path suffixes
are characterized and added incrementally to a postcondition,
represented as a quantifier-free first-order logic constraint. In
the subsequent computation of new test inputs, our method
checks whether the current path condition is subsumed by the
postcondition. If the answer is yes, the execution of the rest
of the path is skipped.

There are major differences between preconditioned and
postconditioned symbolic executions. The constraint of the
former approach is predefined, while the constraints of the
latter are dynamically computed. The goal of preconditioned
symbolic execution is to avoid the paths that do not satisfy
the predefined constraint, and thus there is no guarantee of
exhaustive path coverage. In fact, if the predefined constraint
is false, no path will be explored. It highlights the fact that
the predefined constraint has to be carefully chosen, or else
it will not be effective. In contrast, postconditioned symbolic
execution has a path coverage that is equivalent to standard
symbolic execution, because the dynamically computed post-
conditions eliminate redundant paths only.

We have implemented a software tool based on the KLEE

symbolic virtual machine [6] and evaluated it using a large set
of C programs from the GNU Coreutils suite that implements
some of the most frequently used Unix/Linux commands.
These benchmarks can be considered as representatives of
the systems code in Unix/Linux. They are challenging for
symbolic execution due to the extensive use of error checking
code, loops, pointers, and heap allocated data structures. Nev-
ertheless, our experiments show that postconditioned symbolic
execution can have a significant speedup over state-of-the-art
methods in KLEE on these benchmarks.
To sum up, our main contributions are listed as follows:

o We propose a new postconditioned symbolic execution
method for identifying and eliminating common path
suffixes to mitigate the path explosion problem.

« We implement a prototype software tool based on
KLEE [6] and experimentally compare our new method
with the state-of-the-art techniques.

o We confirm, through our experimental analysis of real-
world applications, that redundancy due to common path
suffixes is both abundant and widespread, and our new
method is effective in reducing the number of explored
path as well as the execution time.

The remainder of this paper is organized as follows. We
first establish the notation and review existing techniques in
Section II. Then, we present our postconditioned symbolic
execution method in Section III, followed by experimental
results in Section IV. We review related work in Section V,
and finally give our conclusions in Section VI

II. PRELIMINARIES

In this section, we review the classic algorithm for test case
generation based on symbolic execution.

We consider a sequential program P with a set V of
program variables and a set Instr of instructions. Let V;,, C V
be the subset of input variables, which are marked in the
program as symbolic, e.g., using char x:= symbolic ().
The goal of test generation is to compute concrete values for
these input variables such that the new test inputs, collectively,
can cover all possible execution paths of the program.

We assume an active testing framework [9] where all de-
tectable failures are modeled using a special abort instruction.
The reachability of abort indicates the occurrence of a runtime
failure. For example, instruction assert (c) can be modeled
as if (!c)abort, instruction x=y/z can be modeled as
if (z==0)abort;else x=y/z, and instruction t->k=5
can be modeled as if (t==null)abort;else t—->k=5.
Consider that abort may appear anywhere in a sequential path,
in general, detecting the failures requires the effective coverage
of all valid execution paths.

Let instr € Instr be an instruction in the program. An
execution instance of instr is called an event, denoted ev =
(1, instr,l’), where [and I’ are the control locations before and
after executing the instruction. A control location [is a place
in the execution path, not the location of the instruction (e.g.,
line number) in the program code. For example, if instr is
executed multiple times in the same execution path, e.g., when
instr is inside a loop or a recursive function, each instance of

instr would give rise to a separate event, with unique control
locations [and I’. Conceptually, this corresponds to unwinding
the loop or recursive calls.

An instruction instr may have one of the following types:

« halt, representing the normal program termination;

o abort, representing the faulty program termination;

e assignment v := exp, where v € V and exp is an
expression over the set V' of program variables;

e branch if(c), where c is a conditional expression over V'
and if(c) represents the branch taken by the execution.
The else-branch is represented by if(—c).

With proper code transformations, the above instruction types
are sufficient to represent the execution path of arbitrary C
code. For example, if ptr points to &a, *p:=5 can be
modeled as i f (p==&a) a:=5. Andif g points to &b, g—>x
:=10 can be modeled as if (g==&b) b.x:=10. For a
complete treatment of all instruction types, please refer to the
original dynamic symbolic execution papers on DART [1],
CUTE [3], or KLEE [6].

A concrete execution of a deterministic sequential program
is fully determined by the test input. Let 7 be a test input.
Let path 7 = [y N N SN l, be the sequence
of events executed under test input 7. A suffix of 7 is a
subsequence =1 = livy .. = 1, where 0 < i < n. If
we denote the concrete execution by the pair (7, 7), then the
corresponding symbolic execution is denoted (*,7), where *
means that the test input is arbitrary.

The set of all possible symbolic executions of a program
can be captured by a directed acyclic graph (DAG), where
the nodes are control locations and the edges are instructions
that move the program from one control location [to another
control location I’. The root node is the initial program state,
and each terminal node represents the end of an execution. A
non-terminal node [may have one outgoing edge, which is
of the form I “=5" I, or two outgoing edges, each of which

is of the form [”KQ . The goal of symbolic execution is
to compute a set 7 of test inputs such that, collectively, they
cover all valid paths in the DAG.

Algorithm 1 shows the pseudocode of the classic symbolic
execution procedure, e.g., the one implemented in KLEE.
Given a program P and an initial state, the procedure keeps
discovering new program paths and generating new test inputs,
with the goal of covering these paths. That is, if 7 is a valid
path of the program P under some test input, it should be able
to generate test input 7 € 7 that replays this path.

In this algorithm, a program state is represented by a tuple
(pcon,l,mem), where pcon is the path condition along an
execution and [is a control location and mem is the memory
map. For each program variable v € V, its symbolic value
is represented by the expression mem/[v]. The initial state is
(true, linit, mempit), meaning that the path condition pcon
is true and l;,;¢ is the beginning of the program. We use
stack to store the set of states that need to be processed by
the symbolic execution procedure. Initially, stack contains
the initial state only. Within the while-loop, for each state
(pcon,l,mem) in the stack, we first find the successor state,
when instr is an assignment, or the set of successor states,

when the instructions are branches. For each successor state,
we compute the new path condition pcon’ and the control
location [’.

Algorithm 1 StandardSymbolicExecution()

init_state < (true, linit, meminit);
stack.push(init_state);
while (stack is not empty)

(pcon, 1, mem) « stack.pop();

if (pcon is satisfiable under mem)

for each (event [inst)

if (instr is abort)
return (; /BUG_FOUND;

else if (instr is halt)
T < solve (pcon, mem);
T:=TU{th

else if (instr is if(c))
next_state < (pcon A ¢,l’, mem);
stack.push(next_state);

else if (instr is v :=exp)
next_state < (pcon,l’, mem[v + exp]);
stack.push(next_state);

R = = m =
SOXITUNAELN—OVRID NE LN~

end if
end for
end if
21: end while
22: return T

There are four types of events that can move the program
from location [to location [’.
. ab . .
o If the event is | 225 I/, the symbolic execution procedure

finds a bug and terminates.

o If the event is [™% ', the symbolic execution path
reaches the end.

o If the event is | "—=" I/, the new memory map mem’
is computed by assigning exp to v in mem, denoted

mem[v + exp).

o If the event is [M I’, the new path condition pcon’ is

computed by conjoining pcon with ¢, denoted pcon A c.
Since we use a stack to hold the set of ro-be-processed
states, Algorithm 1 implements a depth-first search (DFS)
strategy. That is, the procedure symbolically executes the first
full path toward its end before executing the next paths. On a
uniprocessor machine, the set of paths of a program would be
executed sequentially, one after another. In addition to DFS,
other frequently used search strategies include breadth-first
search (BFS) and random search. These alternative strategies
can be implemented by replacing the stack with a queue or
some random-access data structures.

Although the classic symbolic execution procedure in Algo-
rithm 1 can systematically generate test inputs that collectively
cover the entire space of paths up to a certain depth, the
number of paths (and hence test inputs) is often extremely
large even for medium-size programs. Our observation is that,
in practice, many program paths share common path suffixes.
Since the goal of software testing is to uncover bugs, once
a path suffix is tested, there is no need to generate new test
inputs to cover the path suffix again in the future.

In the remainder of this paper, we shall present post-
conditioned symbolic execution that is able to identify and
then eliminate such redundant path suffixes. In the best case
scenario, removing such redundant paths can lead to an
exponential reduction in the number of explored paths.

III. ELIMINATING REDUNDANCY USING
POSTCONDITIONED SYMBOLIC EXECUTION

A. A Motivating Example

In this section, we illustrate the main idea behind postcon-
ditioned symbolic execution using an example. Consider the
program in Figure 1, which has three input variables a, b,
c and three consecutive if-else statements. The goal is
to compute a set of test inputs, each of which has concrete
values for all input variables, to exhaustively cover the valid
execution paths of the program. Since the three branching
statements are independent from each other, there are 23 =8
distinct execution paths. Classic symbolic execution tools
would generate eight test inputs. The covered paths of this
example, numbered from 1 to 8, are shown in Figure 1 (right).
For instance, P1 is a path that passes through the if-branch at
Line 1, the if-branch at Line 3, and the if-branch at Line 5.

1: 1if (a<=0) res = res+l; P1 P2 P3 P4 P5 P6 P7 P8
2: else res = res-1; = ———mmm——mm—————————————
11 1 1 2 2 2 2
3: 1if (b<=0) res = res+2; | | | | | | | |
4: else res = res—2; 3 3 4 4 3 3 4 4
... | | | | | | | |
5: 1f (c<=0) res = res+3; 5 6 5 6 5 6 5 6
6: else res = res-3; | | | | | | | |

Fig. 1. A program with three branches and eight paths.

Clearly, the number of paths of a program, like the one
in Figure 1, can be exponential in the number of branch
conditions—the worst case is when the branch conditions are
completely independent of each other. However, although the
eight paths in Figure 1 are different, they share common path
suffixes. For instance, the suffix ... — 3 — 5 is shared by
paths No. 1 and No. 5; and the suffix ... — 6 is shared by
paths No. 2, No. 4, No. 6, and No. 8. Since the goal of testing
is to uncover bugs, once a path suffix has been tested, we
should not explore it again in the future.

Using the information shown in Table I, we first show
how standard symbolic execution works. Then, we show
how postconditioned symbolic execution works on the same
example. This would explain the reason why our new method
can achieve the same exhaustive path coverage, but needs only
4 out of the 8 test inputs computed by the standard method.

Columns 1-4 illustrate the process of running standard
symbolic execution on the program in Figure 1. Column 1
shows the index of the path (numbered from 1 to 8). Column 2
shows the sequence of branches taken by the path. Column 3
shows the path condition accumulated by symbolic execution
at each branch. Column 4 shows at which step the constraint
solver is invoked to check the satisfiability (SAT) of the path
condition, to compute the test input.

Columns 5-7, in contrast, illustrate our new method. Col-
umn 7 shows the summary of explored path suffixes, which
is computed for each if-else statement, after the execution of
this path terminates. In contrast to the original path condition ¢
shown in Column 3, the new path condition ¢’ in Column 5 is
the conjunction of ¢ with the negated postcondition —II,,s[]
at location [—it is worth pointing out that the postcondition

IT,0s:[l] is computed at the end of the previous symbolic
execution path.

For path No. 1, since the summary does not yet exist when
we compute the path condition ¢/, we assume that IT,,[l] =
false for every location .

Therefore, the new path conditions at Lines 1, 3 and 5
remain the same; they are (a < 0), (a < 0) A (b < 0) and
(a <0)A(b<0)A (c <0), respectively. A test input such
as a = 0,b = 0,c = 0 can be computed by solving the path
condition (a < 0) A (b < 0) A (¢ <0) at Line 5.

At the end of Path No. 1, we summarize its path suffix
by performing a weakest precondition computation. Here, we
informally explain how the postconditions in Column 7 are
obtained. At the end of executing path No. 1, we scan the path
in reverse order to find the last branch instruction, which is the
one at Line 5. Since the branch has been covered, we record
the summary constraint (¢ < 0). Similarly, for the branch at
Line 3, we record the summary constraint (b < 0) A (¢ < 0),
which corresponds to the path suffix that passes through Line
3 and Line 5. For the branch at Line 1, we record the summary
constraint (a < 0) A (b < 0) A (¢ < 0), which corresponds to
the path suffix that passes through Lines 1, 3, and 5.

Path No. 2 starts from the else-branch at Line 6. The
original path condition is ¢ = (a < 0) A (b < 0) A (¢ > 0)
at Line 5. In our new method, the path constraint should be
¢’ = ¢ A—(c < 0), where ¢ < 0 is the summary of the already
explored path suffix. Since ¢’ = ¢, we do not gain anything
by applying this reduction. A test input such as ¢ = 0,b =
0,c = 1 can be computed by solving the path condition at
Line 5.

At the end of path No. 2, we know that the branch
characterized by (¢ < 0) has been explored. Furthermore,
the branch characterized by (¢ > 0) has been explored.
Therefore, the combined postcondition at Line 5 becomes
(¢ <0)V(c> 0) = true. We propagate the result backward to
Line 3, where the postcondition is (b < 0) Atrue, which is the
same as (b < 0). Combining it with the previously computed
postcondition, we have ((b < 0) A (¢ < 0)) V (b < 0), which
is the same as (b < 0) at Line 3. Similarly, the postcondition
at Line 1 is updated to (a < 0) A (b < 0).

Path No. 3 starts from the else-branch at Line 4 and
then reaches Line 5. Since we are interested in exploring
path suffixes not yet covered at Line 5, we check whether
@' = ¢ N —true is satisfiable. Here —true is the negation of
the postcondition computed at the end of path No. 2. Since
¢’ is unsatisfiable, the symbolic execution terminates before
executing Line 5, because continuing the execution would not
lead to any new path. In this case, the test input computed
by the solver by solving the path condition at Line 4 can be
a = 0,b = 1,¢c = *, meaning it is immaterial whether Line
5 or Line 6 is executed (both branches have been explored
before).

At the end of path No. 3, we compute the summary
constraint (b < 0) V (b > 0), which is the same as true at
Line 3. We compute the summary constraint (a < 0) A (b <
0) V (a < 0), which is the same as (a < 0) at Line 1.

In our method, path No. 4 will be skipped.

Path No. 5 starts from the else-branch at Line 2 under

the constraint (¢ > 0). Once it reaches Line 3, our pruning
algorithm shows that ¢’ = ¢ A —true is unsatisfiable, and
therefore symbolic execution will not go beyond Line 3. In
this case, the test input computed at Line 2 can be a = 1,0 =
*, c = *, where x means that is immaterial which of the four
path suffixes will be executed (all of them have been explored
before).

At the end of path No. 5, we compute the summary
constraints. At this time, all postconditions become true, indi-
cating that no future symbolic execution is needed. Therefore,
paths No. 6-8 are skipped.

For ease of comprehension, the program used in this exam-
ple is over-simplified because there are no data or control de-
pendency between the conditional expressions in the branches.
In nontrivial programs, the computation of postconditions is
more complicated and the conditional expressions can be
transformed due to data dependency. In the rest of this section,
we present algorithms that handle the general programs.

B. Overall Algorithm

The pseudocode of our postconditioned symbolic execution
is shown in Algorithm 2. The overall flow remains the same as
in Algorithm 1. However, there are several notable additions.

We maintain a global key-value table called I, [|, which
maps a control location [in the execution path to the summary
IT,0s:[] of all explored path suffixes originating from the
location /. Such summary table enables early termination that
leads to pruning of partial or whole paths. In additional to
the case where instr is halt at Line 9, we also terminate the
forward symbolic execution when (pconAc) — I, [I'] holds
under the current memory map at Line 14. In this case, the
path condition (pcon A ¢) is fully subsumed by the summary
IT,0s¢ '] of all explored path suffixes originated from the next
control location [’. We can terminate early and compute the
new test input at this point, because from this point on, all
path suffixes have already been tested.

The summary table is created and then updated by the
procedure call UpdatePostcondition() at Lines 12 and 17.
At the end of each execution path, when the current instr
is halt, we invoke UpdatePostcondition(_L, true) at Line 12
so a weakest precondition computation can start from terminal
node L with the initial logic formula true. The second proce-
dure call happens at Line 17 when the current path condition
is subsumed by the postcondition at {’. In this case we invoke
UpdatePostcondition(!’, IT,,,.,[I']) so a weakest precondition
computation can start from !’ with the initial logic formula
being the current postcondition at !’. This new procedure, to
be discussed in Section III-C, updates the summaries for all
control locations along the current path.

C. Summarizing Common Path Suffixes

We construct the summaries for visited control locations
incrementally. Initially II,,.[l] = false for every control
location I. Whenever a new test input is generated for the
path 7, we update II,,[l] for all control locations in
based on the weakest precondition computation along 7 in
the reverse order. The weakest precondition, defined below, is

TABLE I

SYMBOLIC COMPUTATION FOR THE PROGRAM IN FIGURE 1

Path | Br No. | Path condition ¢ (original) TestGen || Path condition ¢’ (with pruning) TestGen Postconditions
1 (a<0) (a<0) (@<0)ADB<0)A(c<DO)
1 3 (a<0)A(b<O (a < 0)A(b<0) (b<0)A (c<0)
5 (@a<0)A(B<O0)A(c<0) | SAT (a<0)A(b<0)A(c<0) SAT (c < 0)
[(@<0) (@<0) @<0A(B<0)
2 3 | (@<0)A (<o) (a<0)A(b<0) (b < 0)
6 (a<OOADB<LO)A(c>0) SAT (a<O)ADB<O)A(c>0)A=(c<0) SAT true
1 (a <0) (a <0) (a<0)
3 4 (a < 0)A (b>0) (a < 0)A (b>0) SAT true
5 (a<O)ADB>0)A(c<0) SAT (a <0)A(b>0)A(c <0)A —true true
1 (a<0) (skipped)
4 4 (a<0)A(b>0)
6 (a<0)A(b>0)A(c>0) SAT
2 (a>0) (a>0) SAT true
5 3 (a>0)A(§0) (a>0) A (b<0)A —true true
5 (a>0)A(b<O0)A(c<0) | SAT true
2 (a>0) (skipped)
6 3 (a>0)A(b<0)
6 (a>0)ADB<0)A(c>0) SAT
2 (a >0) (skipped)
7 4 (a>0)A(b>0)
5 (a>0)A(b>0)A(c<0) SAT
2 (a>0) (skipped)
8 4 (a>0)A(b>0)
6 (a>0)A((b>0)A(c>0) SAT
Algorithm 2 PostconditionedSymbolicExecution() « For a node [with the outgoing edge RS l’ wp[l] =

1: init_state < (true, linit, meminit);
2: stack.push(init_state);
3: while (stack is not empty)
4: (pcon, 1, mem) < stack.pop();
5: if (pcon is satisfiable under mem)
6: for each (event [DS 17 at location)
7: if (instr is abort)
8: return (); /BUG_FOUND;
9: else if (instr is halt)
10: T <— Solve (pcon, mem),
11: T:=TU{th
12: UpdatePostcondition (L, true);
13: else if (instr is if(c))
14: if (pcon A ¢ = Tlpost[l'])
15: T <— Solve (pcon, mem);
16: T :=Tu{r}h
17: UpdatePostcondition (I, II0s¢[l']);
18: else
19: next_state < (pcon A ¢, l');
20: stack.push(next_state);
21: end if
22: else if (instr is v :=exp)
23: next_state < (pcon,l’, mem[v + exp));
24 stack.push(next_state);
25: end if
26: end for
27: end if
28: end while
29: return 7

a logical constraint that characterizes the suffix starting from
a location [of the current execution path. If [is a terminal
node L, initially wp[L] = true. If { is an internal node with an
existing postcondition ¢, initially wpl[l] gb The propagation
of weakest precondition at [along [17 is based on the
type of instr as following:

o For a node [with the outgoing edge I *—=" I, wpll] is
the logic formula computed by substituting v with exp
in wp[l']. That is, wp[l] = wp[l'|[exp/v].

wpll'] A

The pseudocode for updating IT,,s:[] is shown as the pro-
cedure UpdatePostcondition() in Algorithm 3. Since IT, 4[]
is defined as the summation of multiple paths, we accumulate
the effect of newly computed weakest precondition at control
location [by IL,,s[l] = IIpose[l] V wp[l]. Note that updates
happen only when [is the sink of a branch statement as these
are the only control locations where pruning is possible.

Example 1: Consider the motivating example introduced
in Section III-A. At the end of executing path No. 1, we
invoke UpdatePostcondition(), which carries out the summary
computation as follows:

location instruction weakest precondition rule applied
if(a<

o 759 (@<O)A(B<O0)A(c<0) wpli]Ac
e 0) A(c<0) wplla]lexp/o]
L, 7050 b<O0)A(c<0) wplls]Ac

l3 resi=rgst? (¢ <0) wplla]lexp/v]
Iy H(e59) (c<0) wplls]Ae

ls resi=rgsts true wplle]lexp/v]
lg true terminal

Algorithm 3 UpdatePostcondition(/,¢)

Let path be the stack of executed events;

wp[l] + ¢;

while (event =
instr

1

2

3 path.pop() exists)
4 Let I — I’ be the event;

5: if (instr is v :=exp)

6: wpll] < wp[l'][exp/v];

7: else if (instr is if(c))

8 wpll] + wp[l'] Ac;

9 Hpost [l] <~ Hpost [l] \ U)P[l];
0 end if

1

10:
11: end while

D. Pruning Redundant Path Suffixes

We compute the summary of previously explored path
suffixes in Algorithm 2, with the goal of using it to prune
redundant paths. The application of summary is enabled at
Line 14, where the path condition pcon of current execution
7 has been computed. Here, pcon denotes the set of program
states that can be reached from some initial states via .

Algorithm 2 revises Algorithm 1 to enable common path
suffix elimination as follows:

o If pconAc — IIp05[l], no new path suffix can be reached
by extending this execution; in such case, we force
symbolic execution to backtrack from ! immediately,
thereby skipping the potentially large set of redundant
test inputs that would have been generated for all these
path suffixes.

o If pcon A ¢ # W05t [l], there may be some path suffixes
that can be reached by extending the current path from
location [. In this case, we continue the execution as in
the standard symbolic execution procedure.

During the actual implementation, the validity of pcon A ¢ —
II,0s¢[{] can be decided using a constraint solver to check the
satisfiability of its negation (pcon A ¢ A ~Il,ose[l]).

Example 2: Consider the motivating example introduced
in Section ITI-A. When executing path No. 3 in Table I
symbolically up to Line 4, we have path condition pcon =
(@ < 0) A (b > 0). The next instruction is if(c < 0). At
the next control location I/, the summary of explored path
suffixes is IT,, [I'] = true. To check whether (a < 0) A (b >
0) A (¢ < 0) — true holds, we check the satisfiability of its
negation: (a < 0) A (b > 0) A (¢ < 0) A —true. Obviously it is
unsatisfiable as the formula is equivalent to false.

While running Algorithm 2, we would go inside the if-
branch at Line 14. By invoking the constraint solver on
pecon = (a < 0) A (b > 0), we can compute a test input
such as a = 0,b = 1,¢ = %, where * means the value of ¢
does not matter.

After that, and before backtracking, we also invoke Up-
datePostcondition() to summarize the partial execution path
to include it into the summary table, as if we have reached
the end of path No. 3.

E. The Impact of Search Strategies

In Algorithm 2, the states waiting to be processed by the
symbolic execution procedure are stored in a stack, which
leads to a Depth-First Search (DFS) of the directed acyclic
graph that represents all possible execution paths. At any
moment during the symbolic execution, the table IL,,s[|
has the up-to-date information about which common path
suffixes have been explored. This is when our postconditioned
symbolic execution method performs at its best.

In contrast, if Algorithm 2 is implemented by replacing
the state stack with a queue, it would lead to a Breadth-
First Search (BFS) strategy. This is when our common path
elimination method performs at its worst. To see why using the
BFS strategy makes it impossible to pruning redundant paths,
consider the running example introduced in Section III-A.

With BFS, the symbolic execution procedure would have
symbolically propagated the path condition along all eight
paths, before solving the first one to compute the test input.
During the process, the table I, [| is empty because there
does not yet exist any explored path. By the time we compute
the test inputs for path No. 1 and No. 2, and update the table
IT,0s¢]], it would have been too late. In particular, we would
have already constructed the path conditions for all the other
six paths.

FE. Controlling the Cost of Pruning

In our implementation, the size of the table IT,.[| as well
as the size of each logic constraint IT,,,s[/] may be large, e.g.,
when the execution paths are long and many. The summary
I1,05¢[1], in particular, needs to be stored in a persistent media,
meaning that the keys of the table are the global control
locations, and the values are the logic formulas representing
1,05 [I] at global control location . In general, these logical
formulas can become complex.

Therefore, in practice, we use various heuristic approxi-
mations to reduce the computational cost associated with the
construction, storage, and retrieval of the summaries. Our goal
is to reduce the cost while maintaining the soundness of the
pruning, i.e., the guarantee of no missed paths.

We prove that, in general, any under-approximation of
IT,0s:[l] can be used in Algorithm 3 to replace IT,,s.[!] while
maintaining the soundness of our redundant path pruning
method; that is, we can still guarantee to cover all valid paths
of the program. In many cases, using an underapproximation
I0,,,5:[1] to replace I1,04¢[l] can make the computation signif-
icantly cheaper. The reason why it is always safe to do so is
that, by definition, we have 1T, [I[] = Il []. Therefore, if
(pcon A c) — 1L, [I] holds, so does (pcon A c) — Hpost[l].

In practice, we make two types of under-approximations.

e We use a hash table with a fixed number of entries
to limit the storage cost for I, [l]. With a bounded
table, however, two global control locations [and I’
may be mapped to the same hash table entry. In this
case, we use a lossy insertion: Upon a key collision,
ie., key(l) = key(l'), we heuristically remove one of
the entries, effectively making it false (hence an under-
approximation).

e We use a fixed threshold to bound the size of the
individual logic formulas of IT,,s:[!]. That is, we replace
Line 9 in Algorithm 3 by the following statement:
if (|IL,0s:[!]] < threshold) IT,ose[l] ¢ Iposefl] V wpll];

A main advantage of our new pruning method is that it
allows for the use of (any kind of) under-approximation of the
table I, [] while maintaining soundness. This is in contrast
to ad hoc reduction techniques for test reduction, where one
has to be careful not to accidentally drop any executions that
may lead to bugs. Using our method, one can concentrate on
exploring the various practical ways of trading off the pruning
power for reduced computational cost, while not worrying
about the soundness of these design choices.

IV. EXPERIMENTS

To evaluate the effectiveness of postconditioned symbolic
execution in pruning redundant test cases, we consider the
following research questions:

« How much redundancy is there in real-world applications

due to the common path suffixes?

o« How much computational overhead does the pruning

method have?

o With such computational overhead, are there net benefits

for applying the pruning?

We have implemented the proposed method in KLEE, which
is a state-of-the-art symbolic execution tool built on the LLVM
platform. It provides stub functions for standard library calls,
e.g., using uclibc to model glibc calls, and concrete-value
based under-approximated modeling of other external function
calls. In practice, this is a crucial feature because system calls
as well as calls to external libraries are common in real-world
applications.

A. Subjects and Methodology

We have conducted experiments on a large set of C pro-
grams from the GNU Coreutils suite, which implements the
basic commands in the Unix/Linux operating system. These
programs are of medium size, each with between 2000 to 6000
lines of code. They are challenging for symbolic execution
tools partly because they have extensive use of error checking
code, pointers, and heap allocated data structures such as lists
and trees.

Each program is first transformed into the LLVM bytecode
using the standard Clang/LLVM tool-set. The symbolic exe-
cution procedures take the LLVM bytecode program and a set
of user annotated symbolic variables as input. The symbolic
inputs are variables that represent the values of the program’s
command-line arguments.

B. Effectiveness of Pruning

100000 -

10000 4
R
1
A g *

.
7
Je
Y g
1000 > - 3 0‘

100

PSE Time(s)

0.1 < 10 100 1000 10000 100000

KLEE Time(s)

Fig. 2. KLEE v.s. postconditioned symbolic execution (PSE).

We evaluate the effectiveness of our pruning method by
comparing postconditioned symbolic execution against KLEE,
which uses the standard symbolic execution procedure de-
scribed in Algorithm 1. We run both methods on each bench-
mark program for up to 3 hour (10800 seconds).

For these experiments, we have used the symbolic
command-line arguments and stdin as inputs of the pro-
grams, while bounding the string sizes of the content of each
argument to 2. The programs are all terminating due to the
proper test harness and the bound on the size of the symbolic
inputs. All experiments were performed on a computer with a
2.66 GHz Intel dual core CPU and 4 GB RAM.

Figure 2 shows the scatter diagram that compares the
performance of postconditioned symbolic execution (PSE)
against KLEE. The X-axis and Y-axis give the execution time
in seconds of all the 94 benchmarks. If the experiment of a
benchmark exceeds the time limit, we show its execution time
as 10800 seconds in the figure. This figure clearly indicates
that the standard symbolic execution is more efficient when a
benchmark is small, and postconditioned symbolic execution
starts to win where the size of benchmarks become larger.
This is what we have expected as postconditioned symbolic
execution incurs significant overhead, which is to be presented
in Section IV-C. Due to page limit and the interest in the cases
when applying standard symbolic execution is challenging, for
the rest of the section we only gives the experimental results
of the 55 benchmarks that take PSE less than 3 hours and take
KLEE more than 300 seconds(5 minutes) to complete.

The experimental results are given in Table II. Column 1
lists the names of the benchmarks. Columns 2 to 4 show the
number of paths explored, the number of instructions executed,
and the time usage in seconds by KLEE. Columns 5 to 7 show
the corresponding types of data for postconditioned symbolic
execution. The last three columns show the improvement
in terms of the reduction ratio in the number of explored
paths and instructions, as well as the speedup ratio in the
execution time, of postconditioned symbolic execution over
KLEE. With pruning, postconditioned symbolic execution, the
number of paths required to achieve exhaustive coverage is
reduced by about 4.3X. That is, on average more than 70%
of paths are considered redundant by our method. Most of the
reduction actually comes from path-suffix elimination rather
than whole-path elimination. This is indicated by the column
that compares the number of executed instructions. Compared
with KLEE, postconditioned symbolic execution reduces the
executed instructions by about 14.5X. The results confirm
our conjecture that redundancy due to common sub paths is
abundant and widespread in real-world applications and our
new method is effective in eliminating the redundant paths.

The speedup in time, however, is less drastic. Other than
the 15 benchmarks that KLEE cannot complete within the
three hour time whereas our method can, the average speedup
achieved by postconditioned symbolic execution is 2.0X. This
is in contrast with 4.3X and 14.5X in the path and instruction
reductions. In Section IV-C, we give the reasons.

C. Pruning Overhead

There are two major sources of overhead incurred by the
pruning.

o Weakest precondition computation: After each path ex-

ploration, we need to conduct weakest precondition com-
putation along the path, which increases the computa-

TABLE I
COMPARING KLEE WITH POSTCONDITIONED SYMBOLIC EXECUTION.

Test Program || Standard Symbolic Execution (KLEE)

Postconditioned Symbolic Execution

Performance Improvement

I
|| Explored paths | Explored insts [Time (sec) ||

\
| Path ratio [Inst ratio

Name Explored paths | Explored insts | Time (sec) | Speedup in time
arch 1,375 12,230,344 1994.71 246 1,855,846 752.15 5.6X 6.6X 2.7X
base64 1,058 941,7607 1511.49 540 4,019,057 1354.56 2.0X 23X 1.1X
chcon - - >3h 1,227 7,915,005 5336.64 - - 2.0X
chmod - - >3h 1,045 4,233,560 8198.14 - - 1.3X
comm 2,522 22,936,623 4087.59 1,217 10,112,737 3607.04 2.1X 23X 1.1X
cp - - >3h 1,236 11,813,098 4245.87 - - 2.5X
csplit 3,235 31,998,354 10444.05 1,763 13,899,960 7154.76 1.8X 23X 1.5X
dircolors 1,178 13,579,980 1655.75 237 1,059,862 1081.14 5.0X 12.8X 1.5X
dirname 564 4,923,714 439.13 124 80,772 98.58 4.5X 61.0X 4.5X
du 949 628,662,146 2646.26 166 12,362,212 962.24 5.7X 50.9X 2.8X
expand 762 7,820,299 456.87 83 672,604 107.92 9.2X 11.6X 4.2X
expr 651 3,919,884 400.52 136 62,346 221.13 4.8X 62.9X 1.8X
factor - - >3h 1,260 35,709,256 3878.14 - - 2.8X
fmt 792 6,489,860 1770.91 306 2,777,479 736.24 2.6X 23X 24X
fold 967 10,143,108 1063.06 115 1,397,060 697.08 8.4X 7.3X 1.5X
ginstall 4911 48,857,663 10467.79 407 710,212 2141.11 12.1X 68.8X 49X
head - - >3h 1,285 42,104,790 5019.37 - - 2.2X
hostid 1,375 12,278,096 1360.31 255 2,824,828 731.23 54X 4.3X 1.9X
hostname 1,375 13,029,976 1292.04 238 2,986,780 667.59 5.8X 4.4X 1.9X
id 1,340 54,103,365 1218.79 214 4,163,970 691.93 6.3X 13.0X 1.8X
join - - >3h 1,256 31,915,817 6445.28 - - 1.7X
link - - >3h 1,328 42,390,898 6845.52 - - 1.6X
In 1,510 19,212,957 5714.31 238 894,724 2998.6 6.3 21.5X 1.9X
logname 1,375 12,247,184 2029.9 246 1,847,189 1576.5 5.6X 6.6X 1.3X
Is - - >3h 735 121,864,375 3583.25 - - 3.0X
mkdir - - >3h 903 7,388,596 4855.76 - - 2.2X
mkfifo - - >3h 967 8,538,955 4252.86 - - 2.5X
mknod 1,756 15,913,533 2275.7 824 7,958,409 4814.71 2.1X 2.0X 0.5X
mktemp 3,279 31,495,317 5299.09 1,046 11,084,508 4496.36 3.1X 2.8X 1.2X
myv - - >3h 1,137 21,881,541 6077.27 - - 1.8X
nice 637 4,894,266 1017.04 144 420,973 597.13 44X 11.6X 1.7X
nl - - >3h 1,164 9,486,519 7914.07 - - 1.4X
nohup 924 9,846,460 624.17 822 8,517,887 1030.96 1.1X 1.2X 0.6X
od 2,851 43,443,017 4409.97 745 7,691,252 1584.71 3.8X 5.6X 2.8X
printenv 3,663 8,047,843 2637.18 924 2,118,129 1243.32 4.0X 3.8X 2.1X
printf - - >3h 1,347 11,438,582 7119.41 - - 1.5X
ptx 1,914 46,610,662 331243 502 15,765,823 1081.34 3.8X 3.0X 3.1X
readlink 745 5,598,617 643.47 585 3,963,112 506.84 1.3X 14X 1.3X
rm 482 7,340,679 702.99 138 267,419 524.23 3.5X 27.5X 1.3X
setuidgid 1,848 32,832,492 4646.58 363 661,059 784.72 5.1X 49.7X 5.9X
shuf 1,611 14,473,864 6240.45 580 4,152,250 2653.32 2.8X 3.5X 24X
sleep - - >3h 992 12,346,738 6474.45 - - 1.7X
sort 1,801 22,398,578 2114.36 537 2,703,899 1326.72 3.4X 8.3X 1.6X
split 738 4,421,955 460.14 228 108,056 226.37 3.2X 40.9X 2.0X
touch 1,288 2,337,850 1303.89 383 1,559,711 854.31 34X 1.5X 1.5X
tr 1,690 16,302,848 3323.09 789 4,855,035 2080.26 2.1X 34X 1.6X
tsort 580 5,176,989 640.34 116 932,539 478.01 5.0X 5.6X 1.3X
[18% 1,927 20,813,531 3288.5 747 5,515,712 1062.27 2.6X 3.8X 3.1X
uname - - >3h 1,255 11,873,393 5359.82 - - 2.0X
unexpand 812 8,682,733 77177 155 1,144,891 635.85 5.2X 7.6X 1.2X
uniq 939 8,559,681 437.42 355 402,476 424.86 2.6X 21.3X 1.0X
unlink 1,375 12,939,395 2164.11 615 10,270,941 1266.16 22X 1.3X 1.7X
uptime 577 5,475,778 709.71 183 908,314 729.13 3.2X 6.0X 1.0X
users 577 5,257,283 712.63 171 921,753 695.57 34X 5.7X 1.0X
whoami 1,375 12,437,691 1909.14 152 606,472 1108.31 9.0X 20.5X 1.7X
Average - - - - - - 4.3X 14.5X >2.0X

tional cost as well as memory usage as we need to store
complex postconditions at control locations.

o Subsumption check: We need to conduct SMT solving
to check whether the current execution is subsumed by
previous paths. The solving is expensive and it may also
increase the internal SMT memory consumption.

Table III shows the pruning overhead. Column 1 lists the
benchmark names. Columns 2 to 4 compare the memory
usage between KLEE and our approach. On average our
approach uses four times more memory than KLEE. The last
four columns (Columns 5 to 8) show the time breakdown of
postconditioned symbolic execution. Column 5 and 6 show the
time spent on subsumption check and weakest precondition
computation, respectively. Column 8 shows the percentage
of the pruning overhead time against the total time given in
Column 7. On average, the majority of the time (60%) is spent
on subsumption check and weakest precondition computation.
These computations are not needed in standard symbolic

execution. It is worth pointing out that, despite the large
computational overhead, postconditioned symbolic execution
has led to considerable time speedup for large programs.

V. RELATED WORK

As we have mentioned earlier, there is a large body of work
on test input generation based on symbolic execution [1], [2],
[3], [4], [5], [6]- A major obstacle that prevents these methods
from getting even wider application is the path explosion
problem. Although there are efforts on mitigating the prob-
lem, e.g., by using methods based on compositionality [10],
abstraction-refinement [11], interpolation [12], [13], [14], [15],
and parallelization [16], [17], [18], [19], [20], path explosion
remains a bottleneck in scaling symbolic execution to larger
applications.

McMillan proposed a redundancy removal method for sym-
bolic execution, called lazy annotation [12]. The method
computes an interpolant from an unsatisfiable formula due to

TABLE III
PRUNING OVERHEAD IN POSTCONDITIONED SYMBOLIC EXECUTION.

Test Program || Memory

Time Breakdown of Postconditioned Symbolic Execution \

I
|| Check time(CT) | WP time(WT) [All time(AT) | (CT+WT)/AT |

Name || KLEE | Postconditioned SE | Postconditioned SE/KLEE

arch 64 331 5.2X 33.02 537.2 752.15 0.8
base64 55 216 3.9X 387.22 404.43 1354.56 0.6
chcon - 618 - 2358.57 654.74 5336.64 0.6
chmod - 289 - 1515.52 1678.66 8198.14 0.4
comm 95 463 4.9X 523.56 618.24 3607.04 0.3
cp - 634 - 651.25 826.31 4245.87 0.3
csplit 194 958 4.9X 1072.99 835.48 7154.76 0.3
dircolors 60 583 9.7X 56.26 723.65 1081.14 0.7
dirname 28 103 3.7X 13.21 60.86 98.58 0.8
du 52 451 8.7X 218.25 354.01 962.24 0.6
expand 37 115 3.1X 21.35 59.51 107.92 0.7
expr 66 281 4.3X 66.34 115.43 221.13 0.8
factor - 176 - 826.31 1186.79 3878.14 0.5
fmt 46 316 6.9X 132.36 309.18 736.24 0.6
fold 45 266 5.9X 64.72 416.26 697.08 0.7
ginstall 170 341 2.0X 882.17 581.87 2141.11 0.7
head - 765 - 836.28 1795.57 5019.37 0.5
hostid 68 145 2.1X 308.52 11391 731.23 0.6
hostname 64 141 22X 260.43 121.75 667.59 0.6
id 49 267 5.5X 147.81 326.25 691.93 0.7
join - 811 - 1103.98 1881.47 6445.28 0.5
link - 902 - 1172.65 1134.12 6845.52 0.3
In 136 300 22X 1246.61 742.01 2998.6 0.7
logname 63 338 5.4X 60.24 1182.93 1576.5 0.8
Is - 324 - 1362.74 1343.26 3583.25 0.8
mkdir - 979 - 1497.52 1573.77 4855.76 0.6
mkfifo - 856 - 1242.23 1206.85 4252.86 0.6
mknod 98 712 7.3X 1481.27 1548.31 4814.71 0.6
mktemp 125 532 4.3X 1123.12 599.01 4496.36 0.4
mv - 792 - 1138.25 1761.15 6077.27 0.5
nice 45 227 5.0X 101.46 322.46 597.13 0.7
nl - 881 - 1562.86 2774.95 7914.07 0.5
nohup 46 119 2.6X 146.53 360.87 1030.96 0.5
od 73 451 6.2 625.96 780.19 1584.71 0.9
printenv 63 180 2.9X 157.23 607.24 1243.32 0.6
printf - 581 - 1391.78 3230.31 7119.41 0.6
ptx 131 428 3.3X 162.74 482.31 1081.34 0.6
readlink 45 267 5.9X 157.81 206.26 506.84 0.7
m 38 224 5.9X 98.37 272.17 524.23 0.7
setuidgid 83 217 2.6X 116.34 520.59 784.72 0.8
shuf 85 704 8.3X 486.68 1365.03 2653.32 0.7
sleep - 539 - 1116.35 2631.89 6474.45 0.6
sort 94 750 8.0X 217.54 656.43 1326.72 0.7
split 33 75 2.3X 26.98 121.03 226.37 0.7
touch 67 506 7.6X 43.79 474.87 854.31 0.6
tr 92 767 8.3X 388.64 1063.78 2080.26 0.7
tsort 39 83 2.1X 86.14 208.12 478.01 0.6
tty 82 188 2.3X 120.25 518.39 1062.27 0.6
uname - 764 - 1378.57 1863.06 5359.82 0.6
unexpand 38 249 6.6X 112.45 365.97 635.85 0.8
uniq 34 104 3.1X 157.63 106.24 424 86 0.6
unlink 62 572 9.2X 114.85 798.95 1266.16 0.7
uptime 42 183 4.4X 83.35 422.12 729.13 0.7
users 38 215 5.7X 89.26 356.78 695.57 0.6
whoami 63 184 2.9X 80.12 616.82 1108.3 0.6
Average - - 4.9X - - - 0.6

the unreachability of certain branch conditions in a program.
The interpolant can be regarded as an over-approximated set of
forward reachable states. Jaffar ez al. [13], [14], [15] proposed
a similar method in the context of dynamic programming, for
computing resource-constrained shortest paths and analyzing
the worst-case execution time. Although interpolant is more
general than weakest precondition, it is also more expensive
to compute and requires special constraint solvers.

There are also pruning methods based on computing sum-
maries. For example, Godefroid [10] proposed a function sum-
mary based compositional test generation algorithm, where
the input-output summary of a previously explored function
is computed and stored into a database; when the function is
executed again, the symbolic constraints are reused. Majumdar
and Sen [11] proposed a demand-driven abstraction-refinement
style hybrid concolic testing algorithm, which can achieve
a similar reduction. Godefroid et al. [21] proposed a com-
positional may-must program analysis to speed up symbolic

execution using the result from over-approximated analysis
and vice versa. However, our new method is significantly
different in that our common path suffix elimination method
is not restricted to the function boundary, and does not need
the abstract-refinement loop.

There also exist techniques for quickly achieving structural
coverage in symbolic execution [22], [23], [24] or increasing
the coverage of less-traveled paths [25], [26]. These techniques
differ from ours in that they do not attempt to achieve the
complete path coverage. Our method, in contrast, focus on
sound pruning techniques for achieving the complete path
coverage.

The GREEN tool [27] by Visser et al. provides a wrapper
around constraint satisfiability solvers to check if the results
are already available from prior invocations, and reuse the
results if available. As such, they can achieve significant
reuse among multiple calls to the solvers during the symbolic
execution of different paths. GREEN achieves this by distilling

constraints into their essential parts and representing them in
a canonical form. The reuse achieved by GREEN is at a much
lower level. As such, the reuse is orthogonal to the pruning
by our method. Therefore, it would be interesting to see if
GREEN can be plugged into our distributed parallel symbolic
execution framework to achieve more reduction—we leave this
for future work.

The state merging reduction proposed by Kuznetsov et
al. [28] was based on the idea of merging the forward
reachable states obtained on different paths, which can lead
to a decrease of the number of paths that need to be explored.
However, the method differs significantly from our work in
that state merging is a reduction based on the forward paths
(prefixes), whereas our method is a reduction based on the
backward analysis, which computes the summary of path
suffixes. In general, these two techniques are orthogonal and
may be used together to complement each other.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new redundancy removal method for
symbolic execution, which can identify and eliminate common
path suffixes that are shared by multiple test runs. We have
implemented a prototype software tool and evaluated it on real
applications. Our experiments show that redundancy due to
common path suffixes are abundant and widespread in practice,
and our method is effective in eliminating redundant paths.
However, the speedup in execution time is less impressive
due to memory and computation overheads. In the future, we
plan to more carefully examine the trade-offs between effective
redundancy removal and the computational cost of detecting
and eliminating such redundancy. We believe that heuristics
based on static program analysis can make the pruning more
efficient. In addition, we plan to develop parallel algorithms
that speed up postconditioned symbolic execution.

VII. ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation of China (NSFC) under grant 61472318,
the National Science and Technology Major Project under
Grant 20127X01039-004, and the National Science Founda-
tion (NSF) under grants CCF-1149454, CCF-1500365, and
CCF-1500024. Any opinions, findings, and conclusions ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated ran-
dom testing.” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, Jun. 2005, pp. 213-223.

[2] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing,” in USENIX Symposium on Network and Distributed System
Security, 2008.

[3] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing
engine for C,” in ACM SIGSOFT Symposium on Foundations of Software
Engineering, 2005, pp. 263-272.

[4] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in International Conference on
Computer Aided Verification. Springer, 2006, pp. 419-423.

[5] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in ASE, 2008, pp. 443-446.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in USENIX Symposium on Operating Systems Design and Implementa-
tion, 2008, pp. 209-224.

C. S. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” International Journal on
Software Tools for Technology Transfer, vol. 11, no. 4, pp. 339-353,
2009.

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
Automatic exploit generation,” in USENIX Symposium on Network and
Distributed System Security, Feb. 2011.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Active property check-
ing,” in International Conference on Embedded Software, 2008, pp. 207—
216.

P. Godefroid, “Compositional dynamic test generation,” in ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, 2007, pp. 47-54.

R. Majumdar and K. Sen, “Hybrid concolic testing,” in International
Conference on Software Engineering, 2007, pp. 416-426.

K. L. McMillan, “Lazy annotation for program testing and verification,”
in International Conference on Computer Aided Verification, 2010, pp.
104-118.

J. Jaffar, A. E. Santosa, and R. Voicu, “Efficient memoization for
dynamic programming with ad-hoc constraints,” in AAAI, 2008, pp. 297—
303.

J. Jaffar, A. Santosa, and R. Voicu, “An interpolation method for CLP
traversal,” in International Conference on Principles and Practice of
Constraint Programming, 2009, pp. 454—469.

D.-H. Chu and J. Jaffar, “A complete method for symmetry reduction
in safety verification,” in International Conference on Computer Aided
Verification, 2012, pp. 616-633.

C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. R.
Lowry, S. Person, and M. Pape, “Combining unit-level symbolic execu-
tion and system-level concrete execution for testing NASA software,” in
International Symposium on Software Testing and Analysis, 2008, pp.
15-26.

L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea, “Cloud9:
a software testing service,” Operating Systems Review, vol. 43, no. 4,
pp- 5-10, 2009.

M. Staats and C. S. Pasareanu, “Parallel symbolic execution for struc-
tural test generation,” in International Symposium on Software Testing
and Analysis, 2010, pp. 183-194.

J. H. Siddiqui and S. Khurshid, “Scaling symbolic execution using
ranged analysis,” in ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, 2012, pp. 523—
536.

M. Kim, Y. Kim, and G. Rothermel, “A scalable distributed concolic
testing approach: An empirical evaluation,” in /CST, 2012, pp. 340-349.
P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali, “Compositional
may-must program analysis: unleashing the power of alternation,” in
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, 2010, pp. 43-56.

R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test
generation for coverage criteria,” in /[EEE International Conference on
Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara,
Romania, 2010, pp. 1-10.

X. Ge, K. Taneja, T. Xie, and N. Tillmann, “DyTa: dynamic symbolic
execution guided with static verification results,” in International Con-
ference on Software Engineering, 2011, pp. 992-994.

X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies of
loop problems for structural test generation via symbolic execution,”
in IEEE/ACM International Conference On Automated Software Engi-
neering, 2013, pp. 246-256.

Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to
less traveled paths,” in ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, 2013, pp. 19-32.
H. Seo and S. Kim, “How we get there: a context-guided search strategy
in concolic testing,” in ACM SIGSOFT Symposium on Foundations of
Software Engineering, 2014, pp. 413-424.

W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: reducing, reusing
and recycling constraints in program analysis,” in ACM SIGSOFT
Symposium on Foundations of Software Engineering, 2012, p. 58.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2012, pp. 193—
204.

