

Learning from Imbalanced Data for Predicting the
Number of Software Defects

Xiao Yu1,2, Jin Liu1*, Zijiang Yang3, Xiangyang Jia1,Qi Ling2,Sizhe Ye1

1State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
2Department of Computer Science, City University of Hong Kong, Kowloon Tong, China

3Department of Computer Science, Western Michigan University, Kalamazoo, Michigan, USA
*Corresponding author email: jinliu@whu.edu.cn

Abstract—Predicting the number of defects in software
modules can be more helpful in the case of limited testing
resources. The highly imbalanced distribution of the target
variable values (i.e., the number of defects) degrades the
performance of models for predicting the number of defects. As
the first effort of an in-depth study, this paper explores the
potential of using resampling techniques and ensemble learning
techniques to learn from imbalanced defect data for predicting
the number of defects. We study the use of two extended
resampling strategies (i.e., SMOTE and RUS) for regression
problem and an ensemble learning technique (i.e., the
AdaBoost.R2 algorithm) to handle imbalanced defect data for
predicting the number of defects. We refer to the extension of
SMOTE and RUS for predicting the Number of Defects as
SmoteND and RusND, respectively. Experimental results on 6
datasets with two performance measures show that these
approaches are effective in handling imbalanced defect data. To
further improve the performance of these approaches, we
propose two novel hybrid resampling/boosting algorithms, called
SmoteNDBoost and RusNDBoost, which introduce SmoteND and
RusND into the AdaBoost.R2 algorithm, respectively.
Experimental results show that SmoteNDBoost and RusNDBoost
both outperform their individual components (i.e., SmoteND,
RusND and AdaBoost.R2).

Keywords—software defect prediction;data imbalance;
resampling;ensemble learning

I. INTRODUCTION
Based on the investigation of software metrics [1-2] (also

referred to as software features), software defect prediction
utilizes historical defect data mined from software repositories
to predict the defect-proneness of new software modules.
Therefore, software defect prediction is often used to help to
reasonably allocate limited testing resources [3-5]. So far,
many efficient software defect prediction methods using
statistical methods or machine learning techniques have been
proposed [6-10], but they are usually confined to predicting a
given software module being defective-prone or not by means
of some binary classification techniques.

However, estimating the defect-proneness of a given set of
software modules is not enough for software testing in practice
due to plenty of criticisms of practicality, especially when there
is a lack of testing resources [7, 11]. Now take a typical
application scenario for example. A software development
team develops a new software project, which contains 100
software modules. Due to the tight deadline, the test team can

afford to inspect a small part of the project (e.g., only 20%
software modules). A sound technical solution is to identify the
modules that are most likely to be defective-prone before
excuting unit tests. Therefore, the test team builds a model for
predicting the defect-proneness of these modules or a model
for predicting the number of defects in these modules using the
historical defect data, including values of all software metrics
and the number of defects. After extracting the same metrics
from new software modules, the test team can use the learned
models to classify these new modules defective-prone or not,
or predict the number of defects in these new software modules.
Assuming that the prediction result of the model for predicting
the defect-proneness is that 30% of them may be defective-
prone, since the test team only can inspect 20% new modules,
they have no idea to which 20% of these modules should be
inspected. But according to the prediction results of the model
for predicting the number of defects, they can obtain an
descending order of the 100 new modules based on the
predicted number of defects, and allocate limited testing
resources to discover the most numbers of defects according to
the order (i.e., inspect the first 20% modules) [5]. Therefore,
predicting the number of defects in software modules can be
more helpful than predicting the modules being defective-
prone or not in the case of limited testing resources [12].

I1

I2

I3

I100

A model for
predicting the

defect-proneness

I1 I2 I3 I100

A model for
predicting the

number of defects

YES NO NO YES
Results of classifying these modules defective-prone or not

Results of predicting the numbers of defects in these modules

I1 I2 I3 I100

2 4 0 1

predict

predict

...

......

 Figure 1. An illustration of the difference between a model for predicting the
defect-proneness and a model for predicting the number of defects.

A number of prior studies have investigated regression
models for predicting the number of defects. Some researchers
[13-16] have investigated genetic programming, decision tree
regression, and multilayer perceptron for predicting the number
of defects and found that these models achieved good
performance. Chen et al. [17] performed an empirical study on
predicting the number of defects using six regression
algorithms and found that the prediction model built with
decision tree regression had the highest prediction accuracy
(i.e., the lowest root mean square error) in most cases. In

2017 IEEE 28th International Symposium on Software Reliability Engineering

2332-6549/17 $31.00 © 2017 IEEE

DOI 10.1109/ISSRE.2017.18

78

another similar study, Rathore et al. [12] presented an
experimental study to evaluate and compare the other six
regression algorithms for predicting the number of defects. The
results found that decision tree regression, Bayesian ridge
regression, multilayer perceptron, and linear regression
achieved better performance in terms of average absolute error
(AEE) and average relative error (ARE). However, the highly
imbalanced distribution of the target variable values (i.e., the
number of defects) degrades the prediction performance. In
most cases, the dataset contains much more non-defective
modules than defective-prone ones. In other words, the number
of defects in the majority of modules is zero, and the minority
of modules have one or more defects. When regression models
are trained by a highly skewed dataset, these models have weak
capability to accurately predict the number of defects in a
defective-prone module.

A common solution to forecasting tasks with imbalanced
data is the use of resampling techniques [18], which balances
the distribution by either adding examples to the minority class
(oversampling) or removing examples from the majority class
(under-sampling). Several resampling techniques for
classification problem have been proposed, such as RUS
(random under-sampling) and SMOTE (synthetic minority
over-sampling technique) [19]. In addition to these resampling
techniques, ensemble learning techniques have become another
major category of approaches to handle imbalanced data, such
as Bagging [20] and Boosting [21]. While resampling
techniques manipulate training data to rectify the skewed
distributions, ensemble learning techniques improve the
performance by combining multiple weak prediction models
(regardless of whether the data are imbalanced).

The aforementioned resampling techniques and ensemble
learning techniques are confined to classification problem, i.e.,
predicting a given software module being defective-prone or
not. Recently, efforts have been made to adapt resampling
techniques and ensemble learning techniques to regression
problem [22, 23]. Torgo et al. [23] adapted SMOTE and RUS
for regression tasks, where the goal is to forecast rare extreme
values of the target variable. Drucker et al. [24] proposed the
Adaboost.R2 algorithm, which is a boosting algorithm for
regression problem. However, it is still unclear what extent
resampling techniques and ensemble learning techniques
contribute to improving the performance of models for
predicting the number of defects, and how to make better use
of them to improve the performance of models for predicting
the number of defects.

As the first effort of an in-depth study of resampling
techniques and ensemble learning techniques for predicting the
number of defects, this paper explores their potential by
focusing on two research questions: Can resampling techniques
and ensemble learning techniques be good solutions to predict
the number of defects? Can we make better use of them? The
answers will provide guidance and valuable information for
choosing and designing good models for predicting the number
of defects.

For the first question, we study the use of resampling
techniques and ensemble learning techniques for predicting the
number of defects. Our endeavor is based on three approaches:

(i) the first is based on SMOTE; (ii) the second is based on
RUS; (iii) the third is based on the Adaboost.R2 algorithm. The
two resampling techniques were initially proposed for
classification problem and were then extended for regression
tasks [22]. We refer to the extension of SMOTE and RUS for
predicting the Numbers of Defects as SmoteND and RusND,
respectively. Using three regression models and two
performance measures, we evaluate the performance of the
three approaches using 6 publicly available project datasets.
Experimental results show that the three approaches can be
good solutions to learn from imbalanced data for predicting the
number of defects.

For the second question, our objective is to develop a better
solution that combines the strength of SmoteND, RusND and
AdaBoost.R2. Inspired by the SMOTEBoost algorithm [58]
and the RUSBoost algorithm [59], we present two novel hybrid
resampling/boosting algorithms called SmoteNDBoost and
RusNDBoost to learn from imbalanced data for predicting the
number of defects. SmoteNDBoost introduces SmoteND into
the Adaboost.R2 algorithm, while RusNDBoost embeds
RusND in the Adaboost.R2 algorithm. We want to utilize
SmoteND and RusND to balance the data distribution, and we
want to employ the AdaBoost.R2 algorithm to improve the
overall prediction performance using these balanced data.
Experimental results show that both SmoteNDBoost and
RusNDBoost achieve better performance than their individual
components (i.e., SmoteND, RusND and AdaBoost.R2).

The remainder of this paper is organized as follows. Section
II presents the related work. Section III introduces the
preliminaries, i.e., the two resampling techniques and an
ensemble learning technique studied in this work. Section IV
and Section V show the experiment setup and experiment
results, respectively. Section VI proposes two better solutions
(i.e., SmoteNDBoost and RusNDBoost) to learn from
imbalanced data for predicting the number of defects. Section
VII discusses the potential threats to validity. Finally, Section
VIII addresses the conclusion and points out the future work.

II. RELATED WORK
In this section, we briefly review the existing defect

prediction methods. These methods can be categorized into two
main types: predicting the defect-proneness of software
modules via classification techniques and predicting the
number of defects in software modules via regression
techniques.

A. Predicting the Defect-proneness of Software Modules
Support vector machine [25-27], neural networks [28-30],

decision trees [31-32] and Bayesian methods [33-37] paved the
way for classification-based methods in the flied of software
defect prediction. These methods used software metrics to
properly predict whether a module is defective-prone or not.
However, the highly imbalanced nature of the defective-prone
and non-defective classes of the data set degraded the
prediction performance. Numerous methods have been
proposed to cope with class imbalance problem. These
methods can be categorized into four main types: resampling

79

[38-42], cost-sensitive [43-51], ensemble learning [52-57] and
hybrid approaches [58-60].

Resampling techniques are classified as oversampling and
under-sampling. Under-sampling reduces the number of
instances in the majority class to balance the class distribution,
whereas oversampling is a technique in which the minority
class is over-sampled by creating synthetic instances. One of
the most popular oversampling techniques is SMOTE [19],
which generates synthetic instances based on a number of
nearest neighbors. One of the most common under-sampling
techniques is RUS, which simply selects a subset of majority
class instances randomly and then combine them with minority
class instances as a training set. Resampling techniques are
simple and efficient, but their effectiveness depends greatly on
the problem and training algorithms [42].

In the process of defect prediction, misclassify different
software defect classes can be divided into two types, namely,
“Type I” and “Type II” [44]. “Type I” misclassification cost
and “Type II” misclassification cost are different. Some cost-
sensitive learning methods [45-52] have been proposed to
address the class imbalance problem by generating a
classification model with minimum misclassification cost. The
problem with cost-sensitive methods is the definition of the
cost matrix as there is no systematic approach to do so.

In addition to the aforementioned resampling techniques
and cost-sensitive methods, ensemble learning techniques [53-
58] have become another major category of approaches to cope
with imbalanced data. Boosting is one of the most popular
ensemble learning techniques, which combines multiple weak
learners to improve the performance. In particular,
AdaBoost.M2 [21] is a popular boosting algorithm for
classification problem. The set of training instances is assigned
an equal weight at the beginning and the weight of instances is
either increased or decreased depending on whether the weak
classifiers of the current iteration classified that instance
incorrectly or not. The next iterations focus on those instances
with higher weights. In this way, AdaBoost.M2 builds a series
of weak classifiers. Finally, the strong classifier is based on a
weighted vote among these weak classifiers.

SMOTEBoost [58] and RUSBoost [59] are two most
representative hybrid approaches to cope with class imbalance
problem. SMOTEBoost is a combination of SMOTE and the
AdaBoost.M2 algorithm, which outperforms both SMOTE and
AdaBoost.M2. In SMOTEBoost, SMOTE is applied to the
training data during each round of boosting to achieve a more
balanced training data set. Similarly, RUSBoost is based on the
AdaBoost.M2 algorithm, but it uses RUS instead of SMOTE.

In our paper, the proposed SmoteNDBoost algorithm is
similar to SMOTEBoost. The differences between
SmoteNDBoost and SMOTEBoost are as follows.
SMOTEBoost combines SMOTE and the AdaBoost.M2
algorithm, while our proposed algorithm SmoteNDBoost
combines SmoteND and the AdaBoost.R2 algorithm, which is
a boosting algorithm for regression. Similarly, RusNDBoost
combines RusND and the AdaBoost.R2 algorithm, while
RUSBoost combines RUS and the Adaboost.M2 algorithm.

B. Predicting the Number of Defects in Software Modules
A number of prior studies have investigated some

regression models for predicting the number of defects. Graves
et al. [15] presented a generalized linear regression based
method for predicting the number of defects using various
change metrics datasets collected from a large
telecommunication system and found that modules age,
changes made to module and the age of the changes were
significantly correlated with the defect-proneness. However, no
performance measure was used to evaluate the appropriateness
of generalized linear regression for predicting the number of
defects [16]. Wang et al. [61] presented BugStates, a method
for predicting the number of defects at each state based on
defect state transition models. Ostrand et al. [62] and Yu et al.
[63] employed negative binomial regression (NBR) model to
predict the number of defects. They found that NBR is
effective in predicting the number of defects. Janes et al. [64]
used three count models (Poisson regression, NBR, and zero-
inflated NBR) to predict the number of defects over five real-
time telecommunication systems. The results found that zero-
inflated NBR model achieved the best performance. Some
researchers [12-15] used genetic programming (GP) to predict
the number of defects and found that GP model produced
significant predictive accuracy. Santosh et al. [16] explored the
capability of decision tree regression (DTR) for predicting the
number of defects in two different scenarios, intra-release
prediction and inter-releases prediction for the given software
system. The results showed that DTR model produced
significant prediction accuracy for predicting the number of
defects in both the considered scenarios.

Gao et al. [65-66] performed a comprehensive empirical
study of five count models for predicting the number of defects.
The study was performed over two industrial software systems.
The results found that zero-inflated negative binomial
regression and hurdle negative binomial regression models
produced better prediction accuracy. Chen et al. [17] performed
an empirical study of six regression algorithms for predicting
the number of defects and found that the prediction model built
with decision tree regression had the highest prediction
accuracy in terms of root mean square error (RMSE). In
another similar study, Rathore et al. [12] presented an empirical
study to evaluate and compare the other six regression
algorithms for predicting the number of defects. The results
found that decision tree regression, genetic programming,
Bayesian ridge regression, and linear regression achieved better
performance in terms of ARE and AEE. However, the
imbalanced distribution of the target variable values (i.e., the
number of defects) degrades the predictive accuracy, but has
not received much attention.

III. PRELIMINARIES
In this section, we present SmoteND, RusND and

AdaBoost.R2 to learn from imbalanced data for predicting the
number of defects. Predicting the number of defects is a
particular class of regression problem. In this context, given a
software defect dataset S={(x1,y1), (x2,y2),…,(xn,yn)}, where xi
is a feature vector representing the software metric values
extracted from the ith instance, yi is the target variable, i.e., the

80

defect numbers of the ith instance, and n is the number of
instances in S, our goal is to obtain a regression model y=F(x).

A. SmoteDE
The SMOTE was initially proposed to address

classification problem with imbalanced class distribution.
Torgo et al. [22] proposed a variant of SMOTE for addressing
regression problem where the key goal is to accurately predict
rare extreme values, which they named SmoteR. There are
three key issues of SmoteR in order to adapt SMOTE for
regression problem: (i) how to define the normal target variable
values and the rare target variable values; (ii) how to create
new synthetic instances (i.e., over-sampling); and (iii) how to
decide the target variable values of these new synthetic
instances.

Regarding the first issue, SmoteR is based on a relevance
function and on a user-specified threshold on the values of this
function that leads to the definition of the rare target variable
value. The instances with the rare target variable value are
called as the rare instances, and the instances with the normal
target variable value are called as the normal instances. For
predicting the number of defects, we define the defective-prone
modules as the rare instances and define non-defective modules
as the normal instances. Regarding the second key issue, we
use the same approach as in SMOTE and SmoteR to generate
synthetic instances for predicting the number of defects. Finally,
the third key issue is to decide the target variable value of the
generated instances. In the original SMOTE algorithm, this is a
trivial question, because all minority class instances have the
same class, the same will happen to the instances generated
from this set [22]. For regression task, the answer is not so
trivial. The instances that are to be over-sampled do not have
the same target variable value. This means that when a pair of
instances are used to generate a new synthetic instance, they
will not have the same target variable value. SmoteR uses a
weighted average of the target variable values of the two seed
instances. The weights are decided based on the distance
between the synthetic instance and these two seed instances.
The larger the distance is, the smaller the weight. For
predicting the number of defects, we use the same approach in
SmoteR to decide the number of defects of the synthetic
instance.

We refer to SmoteR for predicting the number of defects as
SmoteND. Algorithm 1 presents the pseudo-code of SmoteND.
If the number of the synthetic instances is less than the number
of the original rare instances, we randomly select (n×ratio-m)
rare instances to be used for generating new instances (Lines 1-
3). Otherwise, neighbors from the k nearest
neighbors are randomly chosen (Line 6). In this paper, we
choose k as 5. This setting is suggested by Chawla et al. [19].
For example, if we want to generate 2×m rare instances, only
two neighbors from the five nearest neighbors are chosen and
one instance is generated in the direction of each. The key
aspect of this algorithm is the generation of the synthetic
instance. The feature vector of the synthetic instance is
generated in the following way (Line 11): Take the difference
of the feature vector between of the ith rare instance and its
nearest neighbor. Multiply this difference by a random number
between 0 and 1, and add it to the feature vector of the ith rare

instance. The number of defects of the synthetic instance is a
weighted average of the number of defects of the two seed
instances (Lines 12-14). The weights are calculated as an
inverse function of the distance of the generated instance to
each of the two seed instances.

B. RusND
The RUS was initially proposed to address classification

problem with imbalanced class distribution. The basic idea of
RUS is to decrease the number of the normal instances to
balance the ratio between the rare instances and the normal
instances. Different from adapting SMOTE for regression
problem, how to define the normal instances and the rare
instances is the only key issue in order to adapt RUS for
regression problem, because RUS does not involve generating
new synthetic instances. Regarding the key issue, as we have
mentioned in Section III-A, we define the defective-prone
modules as the rare instances and define non-defective modules

Algorithm 1. SmoteND
Input: Defect dataset S={(x1, y1), (x2, y2),…,(xn, yn)}

 Number of the rare instances, m

Desired ratio between the rare instances and the
normal instances, ratio

Number of nearest neighbors, k

Output: Set O of the synthetic rare instances

1. if ratio<2×[m/(n-m)]

2. Randomize the m rare instances;

3. m= ratio×(n-m)-m;

4. index=1;

5. else

6. index=(int) ();

7. for i =1 to m do

8. Calculate k nearest neighbors for i ;

9. while index 0

10. Choose a random number between 1 and k, call it nn ;

11. xsynthetic=xi+Random(0,1)×(xnn-xi);

12. d1 DIST(xsynthetic, xi);

13. d2 DIST(xsynthetic, xnn);

14. ysynthetic= ;

15. Add (xsynthetic,ysynthetic) to O;

16. index--;

17. end while

18. end for

19. return Set O of the synthetic rare instances;

81

as the normal instances. We refer to RUS for predicting the
number of defects as RusND.

The procedure of RusND is as follows:

(1) Determine the number p of selected normal instances
according to the ratio between the rare instances and the
normal instances;

(2) Randomly select p instances from the normal instances;

(3) Combine the selected normal instances and all the rare
instances to obtain the training dataset.

 Compared to SmoteND, the main drawback of RusND is
the loss of information that comes with deleting instances from
the training data [67]. It has the benefit, however, of decreasing
the time required to train the regression model since the size of
the training data set is reduced. On the other hand, SmoteND
results in no lost information, but it increases model training
times.

C. AdaBoost.R2
 Ensemble learning combines a series of k weak learners
with the aim of creating a composite prediction model to
improve prediction accuracy. This paper uses AdaBoost.R2,
which is a well-known boosting algorithm for regression
problem. We present a brief description of the AdaBoost.R2
algorithm in this work due to the space limit. For the complete
details of the AdaBoost.R2 algorithm, please refer to Harris
Drucker’s work [24].

Initially, AdaBoost.R2 assigns each instance from the
training data set S an equal weight. Generating k weak
regression models for the ensemble requires k rounds through
the rest of the algorithm. In round i, the instances from S are
sampled to form a training set, Si, of size |S|. A weak
regression model, Mi, is derived from the training instances of
Si. Next, a so-called loss function is introduced to compute the
performance of the weak regression model using S as a test set.
All the weights of the training instances are then updated
according to the loss function. The process is repeated until a
preset number of weak regression models are constructed or
the average loss is less than 0.5. Finally, the output from
different weak regression models will be combined to produce
single prediction. The final output is the weighted median of
the weak regression models’ results.

In this paper, all boosting algorithms (Adaboost.R2,
SmoteNDBoost, and RusNDBoost) are performed using fifty
iterations. Preliminary experiments with the three algorithms
using more iterations did not result in significant improvement.

IV. EXPERIMENT SETUP

A. Data set
In this experiment, we employ 6 available and commonly

used software project datasets with their 22 releases which can
be obtained from PROMISE [67]. The details about the
datasets is shown in Table I, where #Instance represents the
number of instances in the release, #Defects represents the total
number of defects in the release, %Defect represents the
percentage of defective-prone instances in the release, Max is

the maximum value of defects in the release, Avg is the average
value of defects of all defective-prone instances in the release.
There are the same 20 independent variables (i.e., the 20
software metrics) and one dependent variable (i.e., the number
of defects) in the six datasets. For the complete details of the
software metrics, please refer to [65-66].

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Release #Instance #Defects %Defects Max Avg

Ant

1.3 125 33 16.0% 3 1.65
1.4 178 47 22.5% 3 1.18
1.5 293 35 10.9% 2 1.09
1.6 351 184 26.2% 10 2.00
1.7 745 338 22.3% 10 2.04

Camel

1.0 339 14 3.4% 2 1.08
1.2 608 522 35.5% 28 2.42
1.4 872 335 16.6% 17 2.31
1.6 965 500 19.5% 28 2.66

Jedit

3.2 272 382 33.1% 45 4.24
4.0 306 226 24.5% 23 3.01
4.1 312 217 25.3% 17 2.75
4.2 367 106 13.1% 10 2.21
4.3 492 12 2.2% 2 1.09

Synapse
1.0 157 21 10.2% 4 1.31
1.1 222 99 27.0% 7 1.65
1.2 256 145 33.6% 9 1.69

Xalan
2.4 723 156 15.2% 7 1.42
2.5 803 531 48.2% 9 1.37
2.6 885 625 46.4% 6 1.52

Log4j 1.0 135 61 25.2% 9 1.79
1.1 109 86 33.9% 9 2.32

B. Learners
This paper employs three regression models to predict the

number of defects, Decision Tree Regression (DTR), Bayesian
Ridge Regression (BRR), and Linear Regression (LR). The
first reason we choose these regression models is that these
models achieved better performance in most cases for
predicting the number of defects [11-12]. The second reason
we choose these regression models is that these models fall into
three different families of learning methods. DTR is a decision-
tree model [69]; BRR is a probabilistic model [68]; and LR is a
statistical model [70].

It is worthy of note that we implement these three
individual regression models based on the python machine
learning library sklearn. We use the default parameter settings
specified by sklearn for these models. That is, we do not
perform additional optimizations for these models.

C. Performance measures
Previous studies [17], [65], [66] have employed some

performance measures, such as average absolute error (AEE),
average relative error (ARE), and root mean square error
(RMSE) for evaluating the performance of models for
predicting the number of defects. Using imbalanced defect data
to derive a regression model and then estimate the error value
of the resulting learned model can result in misleading over-
optimistic estimates due to over-specialization of the learning
algorithm to the imbalanced defect data. Suppose that we have
trained a regression model to predict the number of defects in
the project Ant 1.3, which contains 124 instances and 33
defects. An AEE value of, say, 0.264 (=33/124) may make the
regression model seem quite accurate. But, an AEE value of

82

0.264 may not be acceptable—the regression model could
predict the number of defects of all instances to be zero.
Therefore, we need other performance measures.

Yang et al. [71] pointed out that predicting the precise
number of defects of a module is hard to do due to the lack of
good quality data in practice. Actually, for those existing
approaches that tried to predict explicitly the number of defects
in a software module, they used these predicted numbers to
rank the modules anyway, to direct the software quality
assurance team in targeting the most faulty modules first [15],
[65], [72], [73]. In the beginning, the percentage of defects
contained in the 20% of modules predicted to have the most
faults was used to assess predictive accuracy [15]. However,
the performance can be sensitive to the arbitrary cutoff value of
20%. Testing resources may be sufficient for testing the first 40%
modules, or resources can test only the first 5% modules.
Hence, Weyukers et al. [72] proposed fault-percentile-average
(FPA) to reflect the effectiveness of the different prediction
models across all values of the cutoff, and You et al. [73]
employed Spearman’s rank correlation coefficient and Kendall
rank correlation coefficient [74] as the performance measure.

In the experiment, we employ Kendall rank correlation
coefficient (Kendall for short) and FPA to measure the
performance.

Kendall: Kendall rank correlation coefficient is a statistic
used to measure the ordinal association between two measured
quantities. Let (x1, y1), (x2, y2), …, (xn, yn) be a set of
observations of the joint random variables X and Y respectively.
In this paper, xi and yi are the actual number of defects and the
predicted number of defect in ith instance, respectively. Any
pair of observations (xi, yi) and (xj, yj), where i j, are said to be
concordant if the ranks for both elements agree: that is, if both
xi>xj and yi>yj ; or if both xi<xj and yi<yj. They are said to be
discordant, if xi>xj and yi<yj; or if xi<xj and yi>yj. If xi=xj or yi=yj,
the pair is neither concordant nor discordant. The Kendall
coefficient is defined as:

=

FPA: Considering k modules listed in increasing order of
predicted defect number as f1, f2, f3 ,…, fk, and assuming that ni
is the actual defect number in the module i, n=n1+n2+…+nk is
the total number of defects, and the top predicted modules
should have defects. The proportion of the actual
defects in the top m predicted modules to the whole defects is

.

Then the FPA is define as
 .

FPA is actually the average of the proportions of actual
defects in the top modules to the whole defects, which is a
more comprehensive performance measure than the percentage
of defects in the top 20% modules. A higher FPA means a
better ranking, where the modules with most defects come first.

D. Experimental Design Summary
All experiments are performed using tenfold cross-

validation. We merge the different releases of a project as a

dataset and divide the dataset into ten folds of approximately
equal size, nine of which are used to build the regression model,
while the remaining partition is used to test the model. This
cross-validation is repeated ten times so that each partitions are
used exactly once as the test data. In this paper, we set the
desired ratio between the rare instances and the normal
instances as 100% for SmoteND and RusND. The above
procedure is repeated 20 times in total to avoid sample bias.
Overall performance measure for all approaches is estimated
by averaging the results over 20 runs of tenfold cross-
validation.

V. EXPERIMENT RESULTS
In this section, we present the experiment results to answer

the first research question mentioned in Section I. Table II
records the average Kendall and FPA of all 6 datasets with
four different approaches on three regression models DTR,
BRR and LR. W/D/L (Kendall), short for Win/Draw/Loss
(Kendall), presents the number of datasets, on which the
approach in this column performs better than, the same as, or
worse than None, in terms of Kendall. In the same way,
W/D/L (FPA), short for Win/Draw/Loss (FPA), presents the
number of datasets, on which the approach in this column
performs better than, the same as, or worse than None, in
terms of FPA. For example, the data of the four column of the
four row is 5/0/1, it indicates that RusND outperforms None
on 5 datasets and fails on 1 dataset in terms of FPA. For a
more detailed description of the entire distribution of
prediction performance across all datasets, Fig.1 and Fig.2
show the box-plots of Kendall and FPA values, with the four
approaches for three regression models on the 6 datasets.

TABLE II. AVERAGE PERFORMANCE OF 6 DATASETS WITH THREE

REGRESSION MODELS ON KENDALL AND FPA

Model M SmoteND RusND AdaBoost.R2 None

DTR

Kendall 0.345 0.307 0.354 0.232
FPA 0.718 0.718 0.710 0.626

W/D/L(Kendall) 6/0/0 6/0/0 6/0/0
W/D/L(FPA) 6/0/0 5/0/1 3/0/3

BRR

Kendall 0.321 0.318 0.289 0.310
FPA 0.769 0.768 0.746 0.758

W/D/L(Kendall) 4/1/1 4/0/2 0/0/6
W/D/L(FPA) 6/0/0 6/0/0 0/0/6

LR

Kendall 0.323 0.313 0.256 0.303
FPA 0.768 0.763 0.725 0.754

W/D/L(Kendall) 6/0/0 6/0/0 0/0/6
W/D/L(FPA) 6/0/0 6/0/0 0/0/6

Our experimental results are in tune with the intuitive idea

that resampling techniques and ensemble learning techniques
improve the performance of models for predicting the number
of defects. We can gain the following results from Table II and
Figures 2-3.

(1) For DTR model, SmoteND and RusND achieves the
best average FPA value, but fails in the best Kendall. But, the
median value by RusND is higher than that by SmoteND.
Regarding to the average Kendall, AdaBoost.R2 performs best.

83

The Win/Draw/Loss values show that, on three regression
models, SmoteND, RusND, and AdaBoost.R2 outperform
None on over half of datasets in terms of Kendall and FPA.

(2) For BRR model, AdaBoost.R2 is worse than None. That
is, AdaBoost.R2 does not significantly improve the
performance of the baseline learner and, in some cases, can
hurt the performance. Despite this, SmoteND significantly
improves the performance of this learner and achieves the best
Kendall and FPA values. The Win/Draw/Loss values show that,
on three regression models, SmoteND and RusND outperform
None on over half of datasets in terms of Kendall and FPA.

Figure 2. Box-plots for Kendall on 6 datasets with three regression models.

Figure 3. Box-plots for FPA on 6 datasets with three regression models.

(3) For LR model, SmoteND performs better FPA values
than all the other approaches. The Win/Draw/Loss values

show that, on three regression models, SmoteND and RusND
outperform None on all datasets in terms of Kendall and FPA.
But, AdaBoost.R2 is worse than None. That is, AdaBoost.R2
does not significantly improve the performance of the baseline
learner and, in some cases, can hurt the performance.

To sum up, in almost all situations, SmoteND and
RusND are significant than None. That is, the
improvements obtained by resampling are not specific to
any single learner or performance measures. With the
exception of BRR and LR, AdaBoost.R2 generally
performs similar to or better than None. Therefore, we
can conclude that resampling techniques and ensemble
learning techniques are good solutions to predict the
number of defects.

VI. SMOTENDBOOST AND RUSNDBOOST
To further improve the performance of SmoteND, RusND

and AdaBoost.R2, we propose SmoteNDBoost and
RusNDBoost, which introduce SmoteND and RusND into the
AdaBoost.R2 algorithm to learn from imbalanced data for
predicting the number of defects.

A. SmoteNDBoost
Inspired by the SMOTEBoost algorithm [58], we propose a

SmoteNDBoost algorithm that combines SmoteND and the
AdaBoost.R2 algorithm. We want to utilize SmoteND to
balance the data distribution, and we want to employ
AdaBoost.R2 to improve the overall predictive performance
using these balanced data.

Algorithm 2 presents the pseudo-code of SmoteNDBoost.

(1) In step 1, the weights of each instance are initialized to
1/n, where n is the number of instances in the training data set.

(2) In step 2, the average loss function is initialized to 0.

(3) In step 3, T weak regression models are iteratively
trained, as shown in steps 3a–3h. In step 3a, SmoteND is
applied to create synthetic instances from rare instances until
the new (temporary) training data set St’ accord with the
desired ratio between the rare instances and the normal
instances. For example, if the desired ratio between the rare
instances and the normal instances is 50:50, then the synthetic
instances are created until the numbers of the rare instances and
the normal instances are equal. As a result, St’ will have a new
weight distribution Dt’. Introducing SmoteND in each round of
boosting will enable learner to learn from more of the rare
instances. It is worthy to note that the synthetic instances are
discarded after training a weak learner (step 3b) at iteration t.
That is, they are not added to the original defect dataset.
Therefore, we produce a different set of synthetic instances in
each iteration, which increases the diversity amongst the
regression models in the ensemble. After each boosting
iteration, the error-estimation is on the original defect dataset S
(steps 3c-3e). In step 3g, the weight update parameter t is
calculated as /(1-). Next, the weight distribution for the
next iteration Dt+1 is updated (step 3h).

84

(4) After T iterations of step 3, the final prediction model
F(x) is returned as a weighted vote of the T weak learner (step
4).

B. RusNDBoost
RusNDBoost is based on the SmoteNDBoost algorithm,

which is, in turn, based on the AdaBoost.R2 algorithm.
SmoteNDBoost improves upon AdaBoost.R2 by introducing
SmoteND, which helps to balance the distribution, while
AdaBoost.R2 improves the overall predictive performance
using these balanced data. The difference between
RusNDBoost and SmoteNDBoost is that RusNDBoost applies
RusND to the training data to achieve a more balanced training
data set while SmoteNDBoost applies SmoteND. Therefore,
Algorithm 2 can be modified to represent the RusNDBoost
algorithm by changing step 3a to

Create a temporary training dataset St’ with distribution
Dt’ using RusND;

The RusNDBoost algorithm can overcome two drawbacks
of SmoteNDBoost. First, RusNDBoost decreases the
complexity of the algorithm. SmoteND must find the k nearest
neighbors of the rare instance and extrapolate between them to
make new instances. On the other hand, RusND simply deletes
the normal instances at random. Second, since SmoteND adds
the synthetic instances to the training dataset, it results in
longer model training times. The effect is compounded by
SmoteNDBoost’s use of boosting. On the other hand, RusND
results in smaller training data sets and, therefore, shorter
model training times of RusNDBoost.

C. Experimental Results
In this paper, we set the desired ratio between the rare

instances and the normal instances as 100% for SmoteNDBoost
and RusNDBoost. The ten-fold cross validation is repeated 20
times in total for SmoteNDBoost and RusNDBoost to avoid
sample bias. Overall performance measures for SmoteNDBoost
and RusNDBoost are estimated by averaging the results over
20 runs of tenfold cross-validation. Then, SmoteNDBoost and
RusNDBoost are compared to their individual components
(SmoteND, RusND and AdaBoost.R2) and None.

We perform the Wilcoxon signed-rank test [75] to analyze
whether the performance values of SmoteNDBoost and
RusNDBoost is statistically significant different with those of
the compared approaches on three regression models over all
datasets. The Wilcoxon signed-rank test is a non-parameter
method of statistically significant test. For the performance
values of two approaches compared, the null hypothesis is that
there exists no significant difference between the two
approaches. If the p-value that results from Wilcoxon test is
less than 0.05, the null hypothesis is rejected. That is, the
difference between the two approaches is identified as
statistically significant. The significant test is implemented in
IBM SPSS Statistics [76]. In additional, we compute the effect
size, Hedges’g [77], to quantify the amount of difference
between two approaches. A positive Hedges’g indicates that
the performance of the prevision approach has a greater effect
than that of the latter approach.

Tables III, IV, and V present the detailed FPA values of
each datasets on three regression models with the p-values and
Hedges’g values. The row labeled “p-value (1)” and the row
labeled “Hedges’g (1)” present the comparison results between
SmoteNDBoost and other approaches. The row labeled “p-
value (2)” and the row labeled “Hedges’g (2)” present the
comparison results between RusNDBoost and other approaches.

The following observations are derived from the data in
Tables III, IV, and V.

(1) In almost all situations, both SmoteNDBoost and
RusNDBoost perform significantly better than SmoteND,
RusND, and AdaBoost.R2. In other words, the application of
hybrid resampling/boosting is better than resampling and
boosting alone, and the improvements obtained by hybrid
resampling/boosting are not specific to any single learner.

(2) SmoteND and RusND are significantly better than
AdaBoost.R2 and None on the three regression models.

Algorithm 2. SmoteNDBoost
Input: Defect dataset S={(x1, y1), (x2, y2),…,(xn, yn)}

Desired ratio between the rare instances and the
normal instances, ratio

 Number of nearest neighbors, k

 Weak Learner, WeakLearn

 Number of iterations, T

Output: a prediction model F(x)

1. Initialize D1(i)=1/n for all i;

2. Initialize average loss function 0;

3. for t =1 to T do

(a) Create a temporary training dataset St’ with
distribution Dt’ using SmoteND;

(b) Train a weak learner y=ft(x) using St’ and its
distribution Dt’;

(c) Calculate the loss for each training instance in S as
It(i)=| ft(xi)-yi|;

 (d) Calculate the loss function Lt(i)= for each
training instance in S where Denomt= It(i));

(e) Calculate the average loss t(i)Dt(i);

(g) Set t= /(1-);

(h) Update distribution Dt as Dt+1(i)= ,
where Zt is a normalization factor such that Dt+1
will be a distribution;

4. Output the final prediction model:

F(x)=inf

85

(3) There is no significant difference between the
performances of SmoteND and RusND. The average FPA
values of SmoteND and RusND on the three regression models
are very similar.

(4) While there is no significant difference between the
performances of SmoteND and RusND, it is not the case that
the performances between SmoteNDBoost and RusNDBoost
are similar. With DTR and LR as the base learner,
RusNDBoost outperforms SmoteNDBoost. With BRR as the
base learner, SmoteNDBoost is preferred over RusNDBoost.

TABLE III. FPA VALUES ON 6 DATASETS USING DTR

Project SmoteNDBoost RusNDBoost SmoteND RusND AdaBoost.R2 None
Ant 0.749 0.757 0.71 0.724 0.715 0.61

Camel 0.698 0.725 0.719 0.691 0.693 0.615
Jedit 0.760 0.812 0.787 0.785 0.76 0.671

Synapse 0.689 0.718 0.695 0.718 0.686 0.608
Xalan 0.676 0.659 0.635 0.641 0.634 0.584
Log4j 0.772 0.775 0.762 0.747 0.775 0.668
Avg 0.724 0.741 0.718 0.718 0.710 0.626

p-value(1) 0.116 0.600 0.596 0.104 0.028
Hedges’g(1) -0.359 0.126 0.140 0.289 2.557
p-value(2) 0.116 0.028 0.043 0.420 0.270

Hedges’g(2) 0.359 0.434 0.458 0.583 2.558

TABLE IV. FPA VALUES ON 6 DATASETS USING BRR

Project SmoteNDBoost RusNDBoost SmoteND RusND AdaBoost.R2 None
Ant 0.828 0.811 0.809 0.808 0.786 0.803

Camel 0.776 0.740 0.732 0.728 0.711 0.714
Jedit 0.851 0.821 0.838 0.836 0.804 0.831

Synapse 0.732 0.753 0.720 0.721 0.698 0.709
Xalan 0.702 0.699 0.689 0.687 0.669 0.683
Log4j 0.83 0.840 0.827 0.827 0.808 0.807
Avg 0.787 0.777 0.769 0.768 0.746 0.758

p-value(1) 0.345 0.027 0.027 0.028 0.027
Hebdges’g(1) 0.159 0.282 0.303 0.673 0.467

p-value(2) 0.345 0.249 0.248 0.028 0.075
Hedges’g(2) -0.159 0.138 0.160 0.543 0.331

TABLE V. FPA VALUES ON 6 DATASETS USING LR

Project SmoteNDBoost RusNDBoost SmoteND RusND AdaBoost.R2 None
Ant 0.819 0.826 0.806 0.803 0.764 0.797

Camel 0.736 0.759 0.736 0.728 0.704 0.714
Jedit 0.841 0.853 0.839 0.835 0.784 0.832

Synapse 0.747 0.747 0.726 0.72 0.670 0.708
Xalan 0.701 0.716 0.685 0.681 0.651 0.678
Log4j 0.819 0.821 0.815 0.808 0.775 0.794
Avg 0.777 0.787 0.768 0.763 0.725 0.754

p-value(1) 0.043 0.043 0.028 0.028 0.027
Hebdges’g(1) -0.178 0.159 0.250 1.230 0.394

p-value(2) 0.043 0.028 0.028 0.028 0.028
Hedges’g(2) 0.178 0.335 0.426 1.450 0.573

 Figure 4 shows the box-plot of Kendall values, with the six
approaches for three regression models on the 6 datasets. We
can gain the following results from Figure 4.

(1) For DTR model, the median values by SmoteNDBoost
and RusNDBoost are higher than that by SmoteND, RusND,
AdaBoost.R2 and None. In addition, the maximum value by
SmoteNDBoost is much higher than that by other approaches,
except AdaBoost.R2.

(2) For BRR model, the median value by SmoteNDBoost is
much higher than that by other approaches, while the median
value by RusNDBoost is a little lower than that by SmoteND.
In addition, the maximum values by SmoteNDBoost and
RusNDBoost is higher than that by AdaBoost.R2 and None
and a little lower than that by SmoteND and RusND.

(3) For LR model, the median value by RusNDBoost is
much higher than that by all other approaches, and the median
value by SmoteNDBoost is a little lower than AdaBoost.R2.
The maximum values by SmoteNDBoost and RusNDBoost are
higher than that by other approaches, except AdaBoost.R2 and
SmoteND.

Figure 4. Box-plots for Kendall on 6 datasets with three regression models.

 Finally, we directly compare SmoteNDBoost and
RusNDBoost in Table VI. We revert to computing a standard t-
statistic [78] to compare the means of these two approaches to
obtain a more precise comparison. Table VI compares only
SmoteNDBoost and RusNDBoost, with a two-sample t-statistic
calculated for each learner and data set, presented by a
performance metric. Therefore, each column totals to 18 (3
learners × 6 datasets), and in total, 36 pairwise comparisons
between SmoteNDBoost and RusNDBoost were performed,
each with a 95% confidence level. The first row represents the
number of times that SmoteNDBoost significantly outperforms
RusNDBoost, the second row is the number of times that
RusNDBoost significantly outperforms SmoteNDBoost, and
the final row represents the cases with no significant difference

86

between SmoteNDBoost and RusNDBoost. Overall,
SmoteNDBoost is comparably to RusNDBoost, particularly
relative to the Kendall and FPA performance measure.
However, SmoteND’s main drawback (increasing the model
training time due to larger training data sets) is amplified by its
combination with AdaBoost.R2. Given the similar performance
between SmoteNDBoost and RusNDBoost, one would prefer
the simpler and faster approach: RusNDBoost.

TABLE VI. T-TEST COMPARISON OF SMOTENDBOOST AND RUSNDBOOST

 Kendall FPA Total
SmoteNDBoost 3 4 7
RusNDBoost 4 5 9

Neither 11 9 20

To sum up, in almost all situations, both
SmoteNDBoost and RusNDBoost perform significantly
better than SmoteND, RusND, AdaBoost.R2 and None,
and RusNDBoost performs comparably to
SmoteNDBoost while being a simpler and faster
approach.

VII. THREATS TO VALIDITY
In this section, we discuss several validity threats that may

have an impact on the results of our studies.

External validity. Threats to external validity occur when
the results of our experiments cannot be generalized. Although
these datasets have been widely used in many software defect
prediction studies, we still cannot claim that our conclusion can
be generalized to other datasets. Another threat is the choice of
the desired ratio between the rare instances and the normal
instances. In this paper, we choose 5 different desired ratios
(i.e., 80%, 90%, 100%, 110%, and 120%). For different
datasets, the best desired ratio might be different, which might
lead to different results.

Internal validity. We list several concerns about the bias
in regression models selection and the incorrect
implementation process of experiments. To avoid these threats,
we choose three state-of-the-art regression models, which
represent three categories: BRR as a probabilistic model, DTR
a decision-tree model, LR as a statistical model. For the
implementation, we use the python machine learning library
sklearn to avoid the potential faults during the implementation
process of the experiment.

Construct validity. Threats to construct validity focus on
the bias of the measures used to evaluate the prediction
performance. In our experiments, we employ Kendall rank
correlation coefficient and FPA as the evaluation measures.
Nonetheless, other evaluation measures such as Spearman’s
rank correlation coefficient and cost effectiveness graph [79]
can also be considered.

Conclusion validity. Threats to conclusion validity focus
on the statistical analysis method. In this work, we use
Wilcoxon signed-rank test to statistically analyze the six

approaches and a standard t-statistic test to compare
SmoteNDBoost and RusNDBoost.

VIII. CONCLUSION AND FUTURE WORK
Predicting the number of defects in software modules can

be more helpful instead of predicting the modules being
defective-prone or not. The imbalanced distribution of the
target variable values (i.e., the number of defects) is the main
cause of its learning difficulty, but has not received much
attention. As the first effort of an in-depth study, this paper
studies whether and how resampling techniques and ensemble
learning techniques can improve the performance of models for
predicting the number of defects. We investigate two extended
resampling techniques (i.e., SMOTE and RUS) for regression
tasks and an ensemble learning technique (i.e., AdaBoost.R2)
in comparison with three top-ranked regression models (DTR,
BRR, and LR). Experiments on 6 widely-studied project
datasets with two performance measures indicate that
resampling techniques and ensemble learning techniques can
contribute to improving the performance of models for
predicting the number of defects.

To further improve the prediction performance, we propose
two novel hybrid resampling/boosting algorithms called
SmoteNDBoost and RusNDBoost, to alleviate the problem of
imbalanced data distribution for predicting the number of
defects. We evaluate SmoteNDBoost and RusNDBoost, as well
as their individual components (SmoteND, RusND and
AdaBoost.R2). Experimental results show that both
SmoteNDBoost and RusNDBoost perform significantly better
than SmoteND, RusND, and AdaBoost.R2. RusNDBoost
performs comparably to SmoteNDBoost, while being a simpler
and faster approach.

 Further work from this paper includes the investigation of
other resampling techniques and ensemble learning techniques.
Currently, this paper only considers SMOTE, RUS, and
AdaBoost.R2. In addition, as mentioned in Section I, a test
team can allocate limited testing resources according to the
order of new modules based on the predicted numbers of
defects, which ignores the module size, testing cost, and
severity of defects. Some applications might prefer allocating
limited testing resources according to the severity of defects, or
require the test team to consider testing cost. This will be one
of our future research interests. Moreover, we plan to apply our
method to a real-life application [80-81].

ACKNOWLEDGMENT
The authors would like to acknowledge the support

provided by the grands of the National Natural Science
Foundation of China (61572374, No.U163620068, U1135005),
and Academic Team Building Plan for Young Scholars from
Wuhan University (WHU2016012).

REFERENCES
[1] F. Rahman, D. Posnett, and P. Devanbu Recalling the imprecision of

cross-project defect prediction. In Proceedings of the ACM SIGSOFT

87

20th International Symposium on the Foundations of Software
Engineering, 61,2012.

[2] K. Gao, T.M. Khoshgoftaar, and H. Wang. Choosing software metrics
for defect prediction: an investigation on feature selection techniques.
Software Practice & Experience,41(5):579-606, 2011.

[3] M. Shepperd, D. Bowes, and T. Hall. Researcher Bias: The Use of
Machine Learning in Software Defect Prediction. IEEE Transactions on
Software Engineering,40(6):603-616, 2014.

[4] Q. Song, Z. Jia, and M. Shepperd. A general software defect proneness
prediction framework, Software Engineering. IEEE Transactions on
Software Engineering, 37(3): 356-370, 2011.

[5] X. Yang, K. Tang, and X. Yao. A Learning-to-Rank Approach to
Software Defect Prediction. IEEE Transactions on Reliability,64(1):
234-246, 2015.

[6] C. Catal. Software fault prediction: A literature review and current
trends. Expert systems with applications, 38(4): 4626-4636, 2011.

[7] R. Malhotra. A systematic review of machine learning techniques for
software fault prediction, Applied Soft Computing, 27: 504-518, 2015.

[8] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of
machine learning in software defect prediction. IEEE Transactions on
Software Engineering, 40(6): 603-616, 2014.

[9] Guo L, Ma Y, Cukic B, et al. Robust prediction of fault-proneness by
random forests. In 15th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2004: 417-428.

[10] Lu H, Kocaguneli E, Cukic B. Defect prediction between software
versions with active learning and dimensionality reduction. In 25th
International Symposium on Software Reliability Engineering (ISSRE),.
IEEE, 2014: 312-322.

[11] N. E. Fenton and M. Neil. A critique of software defect prediction
models. IEEE Transactions on software engineering, 25(5): 675-689,
1999.

[12] S. S. Rathore and S. Kumar. An empirical study of some software fault
prediction techniques for the number of faults prediction. Soft
Computing, 1-18, 2016.

[13] Rathore S S and Kuamr S. Comparative analysis of neural network and
genetic programming for number of software faults prediction. National
Conference on Recent Advances in Electronics & Computer Engineering
(RAECE), 328-332, 2015.

[14] W. Afzal, R. Torkar, and R.Feldt. Prediction of fault count data using
genetic programming. Multitopic Conference, 2008. INMIC 2008. IEEE
International. IEEE, 2008.

[15] S. S. Rathore and S. Kumar. Predicting number of faults in software
system using genetic programming. Procedia Computer Science, 62:
303-311, 2015.

[16] S. S. Rathore and S.Kumar. A Decision Tree Regression based
Approach for the Number of Software Faults Prediction. ACM SIGSOFT
Software Engineering Notes, 41(1): 1-6, 2016.

[17] M. Chen and Y. Ma. An empirical study on predicting defect numbers.
In Proceedings of the 28th International Conference on Software
Engineering and Knowledge Engineering, 397-402, 2015.

[18] Wang, Shuo, and X. Yao. Using class imbalance learning for software
defect prediction. IEEE Transactions on Reliability, 62(2): 434-443,
2013.

[19] Chawla and V. Nitesh. SMOTE: synthetic minority over-sampling
technique. The Journal of artificial intelligence research, 16: 321-357,
2002.

[20] L. Breiman. Bagging predictors. Machine learning, 24(2): 123-140,
1996.

[21] Freund, Yoav, and E. Robert. Schapire. Experiments with a new
boosting algorithm. icml, 96: 148-156, 1996.

[22] L. Torgo, P. Branco, and R. P. Ribeiro. Resampling strategies for
regression. Expert Systems, 32(3): 465-476, 2015.

[23] L. Torgo, R. P. Ribeiro, and B. Pfahringer. Smote for regression.
Portuguese conference on artificial intelligence. Springer Berlin
Heidelberg, 378-389, 2013.

[24] Drucker and Harris. Improving regressors using boosting techniques.
ICML. Vol. 97, 1997.

[25] K. Elish and M. Elish. Predicting defect-prone software modules using
support vector machines. Journal of Systems and Software, 81(5):649-
660, 2008.

[26] D. Gray, D. Bowes, and N. Davey. Using the support vector machine as
a classification method for software defect prediction with static code
metrics. International Conference on Engineering Applications of
Neural Networks. Springer Berlin Heidelberg, 223-234, 2009.

[27] Z. Yan, X. Chen, and P. Guo. Software defect prediction using fuzzy
support vector regression. International Symposium on Neural Networks.
Springer Berlin Heidelberg, 17-24, 2010.

[28] M. M. T. Thwin and T. S.Quah. Application of neural networks for
software quality prediction using object-oriented metrics. Journal of
systems and software, 76(2): 147-156, 2005.

[29] E. Paikari, M. M. Richter, and G.Ruhe. Defect prediction using case-
based reasoning: an attribute weighting technique based upon sensitivity
analysis in neural networks. International Journal of Software
Engineering and Knowledge Engineering, 22(06): 747-768, 2012.

[30] V. Vashisht, M. Lal, and G. S. Sureshchanda. A framework for software
defect prediction using neural networks. Journal of Software
Engineering and Applications, 8(8): 384, 2015.

[31] J. Wang, B. Shen, and Y.Chen. Compressed C4. 5 models for software
defect prediction. In Proceedings of the 12th International Conference
on Quality Software. IEEE, 13-16, 2012.

[32] N. Seliya and T. M.Khoshgoftaar. The use of decision trees for cost
sensitive classification: an empirical study in software quality prediction.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 1(5): 448-459, 2011.

[33] T. Wang and W. Li. Naive bayes software defect prediction model.
Computational Intelligence and Software Engineering(CISE). IEEE, 1-4,
2010.

[34] B. Turhan and A. B. Bener. Software Defect Prediction: Heuristics for
Weighted Naïve Bayes. ICSOFT (SE), 244-249, 2007.

[35] S. Amasaki and Y. Takagi, Mizuno O. A bayesian belief network for
assessing the likelihood of fault content. In Proceedings of the 14th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 215-226, 2003.

[36] Fenton N, Neil M, and Marsh W. On the effectiveness of early life cycle
defect prediction with Bayesian Nets. Empirical Software Engineering,
13(5): 499, 2008.

[37] Okutan, Ahmet, and O. T. Y ld z. Software defect prediction using
Bayesian networks. Empirical Software Engineering, 19(1): 154-181,
2014.

[38] Khoshgoftaar, M. Taghi, K. Gao, and N. Seliya. Attribute selection and
imbalanced data: Problems in software defect prediction. In Proceedings
of the 22th International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE International Conference on. Vol. 1. IEEE, 2010.

[39] Ozturk, M. Maruf, and A. Zengin. HSDD: a hybrid sampling strategy for
class imbalance in defect prediction data sets. In Proceedings of the 5th
Future Generation Communication Technologies (FGCT). IEEE, 2016.

[40] Pelayo, Lourdes, and S. Dick. Applying novel resampling strategies to
software defect prediction. Fuzzy Information Processing Society, 2007.
NAFIPS'07. Annual Meeting of the North American. IEEE, 2007.

[41] L. Chen, B. Fang, and Z. Shang. Tackling class overlap and imbalance
problems in software defect prediction. Software Quality Journal, 1-29,
2016.

[42] Estabrooks, Andrew, T. Jo, and N. Japkowicz. A multiple resampling
method for learning from imbalanced data sets. Computational
intelligence, 20(1): 18-36, 2004.

[43] Zhou, Z. Hua, and X. Y. Liu. Training cost-sensitive neural networks
with methods addressing the class imbalance problem. IEEE
Transactions on Knowledge and Data Engineering, 18(1): 63-77, 2006.

[44] Ting and K. Ming. An instance-weighting method to induce cost-
sensitive trees. IEEE Transactions on Knowledge and Data Engineering,
14(3): 659-665, 2002.

[45] T. M. Khoshgoftaar, E. Geleyn and L. Nguyen. Cost-sensitive boosting
in software quality modeling, High Assurance Systems Engineering,
2002. 7th IEEE International Symposium on. IEEE, 51-60, 2002.

88

[46] J. Zheng. Cost-sensitive boosting neural networks for software defect
prediction, Expert Systems with Applications, 37(6):4537-4543, 2010.

[47] M. Liu, L. Miao, and D. Zhang. Two-stage cost-sensitive learning for
software defect prediction. IEEE Transactions on Reliability, 63(2):676-
686, 2014.

[48] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu. Dictionary
learning based software defect prediction. In Proceedings of the 36th
International Conference on Software Engineering (ICSE).ACM, 414-
423, 2014.

[49] I. H. Laradji, M. Alshayeb, and L. Ghouti. Software defect prediction
using ensemble learning on selected features. Information and Software
Technology, 58: 388-402, 2015.

[50] M. J. Siers and M. Z. Islam. Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to the class
imbalance problem. Information Systems, 51: 62-71, 2015.

[51] T., Divya, and S. Agarwal. Prediction of defective software modules
using class imbalance learning. Applied Computational Intelligence and
Soft Computing, 2016: 6, 2016.

[52] Wang, Shuo, H. Chen, and X. Yao. Negative correlation learning for
classification ensembles. Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE, 2010.

[53] Wang, X. Benjamin, and N. Japkowicz. Boosting support vector
machines for imbalanced data sets. Knowledge and information systems,
25(1): 1-20, 2010.

[54] Z. Sun, Q. Song, and X. Zhu. Using coding-based ensemble learning to
improve software defect prediction. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6): 1806-
1817, 2012.

[55] Wang, Huanjing, T. M. Khoshgoftaar, and A. Napolitano. A
comparative study of ensemble feature selection techniques for software
defect prediction. Machine Learning and Applications (ICMLA), 2010
Ninth International Conference on. IEEE, 2010.

[56] X. Xia, D. Lo, and E. Shihab. Elblocker: Predicting blocking bugs with
ensemble imbalance learning, Information and Software Technology, 61:
93-106, 2015.

[57] T. L. Graves, A. F. Karr, and J. S. Marron. Predicting fault incidence
using software change history. IEEE Transactions on software
engineering, 26(7): 653-661, 2000.

[58] N. V. Chawla, A. Lazarevic, and L. O. Hall. SMOTEBoost: Improving
prediction of the minority class in boosting. European Conference on
Principles of Data Mining and Knowledge Discovery. Springer Berlin
Heidelberg, 107-119, 2003.

[59] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse. RUSBoost: A hybrid
approach to alleviating class imbalance. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 40(1): 185-197,
2010.

[60] Domingos and Pedro. Metacost: A general method for making classifiers
cost-sensitive. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 1999.

[61] Wang, Jue, and H. Zhang. Predicting defect numbers based on defect
state transition models. Empirical Software Engineering and
Measurement (ESEM), 2012 ACM-IEEE International Symposium on.
IEEE, 2012.

[62] T. J. Ostrand, E. J. Weyuker and R. M. Bell. Predicting the location and
number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4): 340-355, 2005.

[63] Yu L. Using negative binomial regression analysis to predict software
faults: a study of apache ant, 2012.

[64] A. Janes, M. Scotto, and W. Pedrycz. Identification of defect-prone
classes in telecommunication software systems using design metrics,
Information sciences, 176(24): 3711-3734, 2006.

[65] K. Gao and T. M. Khoshgoftaar, A comprehensive empirical study of
count models for software fault prediction. IEEE Transactions on
Reliability, 56(2): 223-236, 2007.

[66] T. M. Khoshgoftaar and K. Gao. Count models for software quality
estimation. IEEE Transactions on Reliability, 56(2): 212-222, 2007.

[67] G. Boetticher, T. Menzies and T. Ostrand, The PROMISE Repository of
Empirical Software Engineering Data,
<http://promisedata.org/repository>, 2007.

[68] H. D. Vinod. A survey of ridge regression and related techniques for
improvements over ordinary least squares. The Review of Economics
and Statistics, 121-131, 1978.

[69] W. J. Long, J. L. Griffith, and Selker H P. A comparison of logistic
regression to decision-tree induction in a medical domain. Computers
and Biomedical Research, 26(1): 74-97, 1993.

[70] Seber, George AF, and Alan J. Lee. Linear regression analysis. Vol. 936.
John Wiley & Sons, 2012.

[71] Yang, Xiaoxing, K. Tang, and X. Yao. A learning-to-rank approach to
software defect prediction. IEEE Transactions on Reliability, 64(1):
234-246, 2015.

[72] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Comparing the
effectiveness of several modeling methods for fault prediction.
Empirical Software Engineering, 15(3): 277-295, 2010.

[73] You, Guoan and Y. Ma. A Ranking-Oriented Approach to Cross-Project
Software Defect Prediction: An Empirical Study.

[74] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):
81-93, 1938.

[75] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
bulletin, 80-83, 1945.

[76] A.P. Field. Discovering statistics using SPSS for Windows: Advanced
techniques for the beginner. Discovering Statistics Using SPSS for
Windows: Advanced Techniques for Beginners. Sage Publications, Inc.,
2000.

[77] Kampenes, V. By, et al, A systematic review of effect size in software
engineering experiments, Inform. Softw. Technol. 49.11 (2007) 1073-
1086.

[78] Winer B J, Brown D R, Michels K M. Statistical principles in
experimental design. New York: McGraw-Hill, 1971.

[79] Jiang T, Tan L, Kim S. Personalized defect prediction. Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013.

[80] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs. International
Conference on Wireless Algorithms, Systems, and Applications.
Springer, Berlin, Heidelberg, 2013: 175-185.

[81] Liu Z, Niu X, Lin X, et al. A Task-Centric Cooperative Sensing Scheme
for Mobile Crowdsourcing Systems. Sensors, 2016, 16(5): 746.

89

