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Abstract—Predicting the number of defects in software 
modules can be more helpful in the case of limited testing 
resources. The highly imbalanced distribution of the target 
variable values (i.e., the number of defects) degrades the 
performance of models for predicting the number of defects. As 
the first effort of an in-depth study, this paper explores the 
potential of using resampling techniques and ensemble learning 
techniques to learn from imbalanced defect data for predicting 
the number of defects. We study the use of two extended 
resampling strategies (i.e., SMOTE and RUS) for regression 
problem and an ensemble learning technique (i.e., the 
AdaBoost.R2 algorithm) to handle imbalanced defect data for 
predicting the number of defects. We refer to the extension of 
SMOTE and RUS for predicting the Number of Defects as 
SmoteND and RusND, respectively. Experimental results on 6 
datasets with two performance measures show that these 
approaches are effective in handling imbalanced defect data. To 
further improve the performance of these approaches, we 
propose two novel hybrid resampling/boosting algorithms, called 
SmoteNDBoost and RusNDBoost, which introduce SmoteND and 
RusND into the AdaBoost.R2 algorithm, respectively. 
Experimental results show that SmoteNDBoost and RusNDBoost 
both outperform their individual components (i.e., SmoteND, 
RusND and AdaBoost.R2). 

Keywords—software defect prediction;data imbalance; 
resampling;ensemble learning 

I.  INTRODUCTION  
Based on the investigation of software metrics [1-2] (also 

referred to as software features), software defect prediction 
utilizes historical defect data mined from software repositories 
to predict the defect-proneness of new software modules. 
Therefore, software defect prediction is often used to help to 
reasonably allocate limited testing resources [3-5]. So far, 
many efficient software defect prediction methods using 
statistical methods or machine learning techniques have been 
proposed [6-10], but they are usually confined to predicting a 
given software module being defective-prone or not by means 
of some binary classification techniques. 

However, estimating the defect-proneness of a given set of 
software modules is not enough for software testing in practice 
due to plenty of criticisms of practicality, especially when there 
is a lack of testing resources [7, 11]. Now take a typical 
application scenario for example. A software development 
team develops a new software project, which contains 100 
software modules. Due to the tight deadline, the test team can 

afford to inspect a small part of the project (e.g., only 20% 
software modules). A sound technical solution is to identify the 
modules that are most likely to be defective-prone before 
excuting unit tests. Therefore, the test team builds a model for 
predicting the defect-proneness of these modules or a model 
for predicting the number of defects in these modules using the 
historical defect data, including values of all software metrics 
and the number of defects. After extracting the same metrics 
from new software modules, the test team can use the learned 
models to classify these new modules defective-prone or not, 
or predict the number of defects in these new software modules. 
Assuming that the prediction result of the model for predicting 
the defect-proneness is that 30% of them may be defective-
prone, since the test team only can inspect 20% new modules, 
they have no idea to which 20% of these modules should be 
inspected. But according to the prediction results of the model 
for predicting the number of defects, they can obtain an 
descending order of the 100 new modules based on the 
predicted number of defects, and allocate limited testing 
resources to discover the most numbers of defects according to 
the order (i.e., inspect the first 20% modules) [5]. Therefore, 
predicting the number of defects in software modules can be 
more helpful than predicting the modules being defective-
prone or not in the case of limited testing resources [12]. 
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 Figure 1.  An illustration of the difference between a model for predicting the 
defect-proneness and a model for predicting the number of defects. 

A number of prior studies have investigated regression 
models for predicting the number of defects. Some researchers 
[13-16] have investigated genetic programming, decision tree 
regression, and multilayer perceptron for predicting the number 
of defects and found that these models achieved good 
performance. Chen et al. [17] performed an empirical study on 
predicting the number of defects using six regression 
algorithms and found that the prediction model built with 
decision tree regression had the highest prediction accuracy 
(i.e., the lowest root mean square error) in most cases. In 
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another similar study, Rathore et al. [12] presented an 
experimental study to evaluate and compare the other six 
regression algorithms for predicting the number of defects. The 
results found that decision tree regression, Bayesian ridge 
regression, multilayer perceptron, and linear regression 
achieved better performance in terms of average absolute error 
(AEE) and average relative error (ARE). However, the highly 
imbalanced distribution of the target variable values (i.e., the 
number of defects) degrades the prediction performance. In 
most cases, the dataset contains much more non-defective 
modules than defective-prone ones. In other words, the number 
of defects in the majority of modules is zero, and the minority 
of modules have one or more defects. When regression models 
are trained by a highly skewed dataset, these models have weak 
capability to accurately predict the number of defects in a 
defective-prone module.  

A common solution to forecasting tasks with imbalanced 
data is the use of resampling techniques [18], which balances 
the distribution by either adding examples to the minority class 
(oversampling) or removing examples from the majority class 
(under-sampling). Several resampling techniques for 
classification problem have been proposed, such as RUS 
(random under-sampling) and SMOTE (synthetic minority 
over-sampling technique) [19]. In addition to these resampling 
techniques, ensemble learning techniques have become another 
major category of approaches to handle imbalanced data, such 
as Bagging [20] and Boosting [21]. While resampling 
techniques manipulate training data to rectify the skewed 
distributions, ensemble learning techniques improve the 
performance by combining multiple weak prediction models 
(regardless of whether the data are imbalanced).  

The aforementioned resampling techniques and ensemble 
learning techniques are confined to classification problem, i.e., 
predicting a given software module being defective-prone or 
not. Recently, efforts have been made to adapt resampling 
techniques and ensemble learning techniques to regression 
problem [22, 23]. Torgo et al. [23] adapted SMOTE and RUS 
for regression tasks, where the goal is to forecast rare extreme 
values of the target variable. Drucker et al. [24] proposed the 
Adaboost.R2 algorithm, which is a boosting algorithm for 
regression problem. However, it is still unclear what extent 
resampling techniques and ensemble learning techniques 
contribute to improving the performance of models for 
predicting the number of defects, and how to make better use 
of them to improve the performance of models for predicting 
the number of defects. 

As the first effort of an in-depth study of resampling 
techniques and ensemble learning techniques for predicting the 
number of defects, this paper explores their potential by 
focusing on two research questions: Can resampling techniques 
and ensemble learning techniques be good solutions to predict 
the number of defects? Can we make better use of them? The 
answers will provide guidance and valuable information for 
choosing and designing good models for predicting the number 
of defects.  

For the first question, we study the use of resampling 
techniques and ensemble learning techniques for predicting the 
number of defects. Our endeavor is based on three approaches: 

(i) the first is based on SMOTE; (ii) the second is based on 
RUS; (iii) the third is based on the Adaboost.R2 algorithm. The 
two resampling techniques were initially proposed for 
classification problem and were then extended for regression 
tasks [22]. We refer to the extension of SMOTE and RUS for 
predicting the Numbers of Defects as SmoteND and RusND, 
respectively. Using three regression models and two 
performance measures, we evaluate the performance of the 
three approaches using 6 publicly available project datasets. 
Experimental results show that the three approaches can be 
good solutions to learn from imbalanced data for predicting the 
number of defects. 

For the second question, our objective is to develop a better 
solution that combines the strength of SmoteND, RusND and 
AdaBoost.R2. Inspired by the SMOTEBoost algorithm [58] 
and the RUSBoost algorithm [59], we present two novel hybrid 
resampling/boosting algorithms called SmoteNDBoost and 
RusNDBoost to learn from imbalanced data for predicting the 
number of defects. SmoteNDBoost introduces SmoteND into 
the Adaboost.R2 algorithm, while RusNDBoost embeds 
RusND in the Adaboost.R2 algorithm. We want to utilize 
SmoteND and RusND to balance the data distribution, and we 
want to employ the AdaBoost.R2 algorithm to improve the 
overall prediction performance using these balanced data. 
Experimental results show that both SmoteNDBoost and 
RusNDBoost achieve better performance than their individual 
components (i.e., SmoteND, RusND and AdaBoost.R2). 

The remainder of this paper is organized as follows. Section 
II presents the related work. Section III introduces the 
preliminaries, i.e., the two resampling techniques and an 
ensemble learning technique studied in this work. Section IV 
and Section V show the experiment setup and experiment 
results, respectively. Section VI proposes two better solutions 
(i.e., SmoteNDBoost and RusNDBoost) to learn from 
imbalanced data for predicting the number of defects. Section 
VII discusses the potential threats to validity. Finally, Section 
VIII addresses the conclusion and points out the future work. 

 

II. RELATED WORK 
In this section, we briefly review the existing defect 

prediction methods. These methods can be categorized into two 
main types: predicting the defect-proneness of software 
modules via classification techniques and predicting the 
number of defects in software modules via regression 
techniques. 

A. Predicting the Defect-proneness of Software Modules 
Support vector machine [25-27], neural networks [28-30], 

decision trees [31-32] and Bayesian methods [33-37] paved the 
way for classification-based methods in the flied of software 
defect prediction. These methods used software metrics to 
properly predict whether a module is defective-prone or not.  
However, the highly imbalanced nature of the defective-prone 
and non-defective classes of the data set degraded the 
prediction performance. Numerous methods have been 
proposed to cope with class imbalance problem. These 
methods can be categorized into four main types: resampling 
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[38-42], cost-sensitive [43-51], ensemble learning [52-57] and 
hybrid approaches [58-60]. 

Resampling techniques are classified as oversampling and 
under-sampling. Under-sampling reduces the number of 
instances in the majority class to balance the class distribution, 
whereas oversampling is a technique in which the minority 
class is over-sampled by creating synthetic instances. One of 
the most popular oversampling techniques is SMOTE [19], 
which generates synthetic instances based on a number of 
nearest neighbors. One of the most common under-sampling 
techniques is RUS, which simply selects a subset of majority 
class instances randomly and then combine them with minority 
class instances as a training set. Resampling techniques are 
simple and efficient, but their effectiveness depends greatly on 
the problem and training algorithms [42]. 

In the process of defect prediction, misclassify different 
software defect classes can be divided into two types, namely, 
“Type I” and “Type II” [44]. “Type I” misclassification cost 
and “Type II” misclassification cost are different.  Some cost-
sensitive learning methods [45-52] have been proposed to 
address the class imbalance problem by generating a 
classification model with minimum misclassification cost.  The 
problem with cost-sensitive methods is the definition of the 
cost matrix as there is no systematic approach to do so. 

In addition to the aforementioned resampling techniques 
and cost-sensitive methods, ensemble learning techniques [53-
58] have become another major category of approaches to cope 
with imbalanced data. Boosting is one of the most popular 
ensemble learning techniques, which combines multiple weak 
learners to improve the performance. In particular, 
AdaBoost.M2 [21] is a popular boosting algorithm for 
classification problem. The set of training instances is assigned 
an equal weight at the beginning and the weight of instances is 
either increased or decreased depending on whether the weak 
classifiers of the current iteration classified that instance 
incorrectly or not. The next iterations focus on those instances 
with higher weights. In this way, AdaBoost.M2 builds a series 
of weak classifiers. Finally, the strong classifier is based on a 
weighted vote among these weak classifiers. 

SMOTEBoost [58] and RUSBoost [59] are two most 
representative hybrid approaches to cope with class imbalance 
problem. SMOTEBoost is a combination of SMOTE and the 
AdaBoost.M2 algorithm, which outperforms both SMOTE and 
AdaBoost.M2. In SMOTEBoost, SMOTE is applied to the 
training data during each round of boosting to achieve a more 
balanced training data set. Similarly, RUSBoost is based on the 
AdaBoost.M2 algorithm, but it uses RUS instead of SMOTE. 

In our paper, the proposed SmoteNDBoost algorithm is 
similar to SMOTEBoost. The differences between 
SmoteNDBoost and SMOTEBoost are as follows. 
SMOTEBoost combines SMOTE and the AdaBoost.M2 
algorithm, while our proposed algorithm SmoteNDBoost 
combines SmoteND and the AdaBoost.R2 algorithm, which is 
a boosting algorithm for regression. Similarly, RusNDBoost 
combines RusND and the AdaBoost.R2 algorithm, while 
RUSBoost combines RUS and the Adaboost.M2 algorithm. 

B. Predicting the Number of Defects in Software Modules 
A number of prior studies have investigated some 

regression models for predicting the number of defects. Graves 
et al. [15] presented a generalized linear regression based 
method for predicting the number of defects using various 
change metrics datasets collected from a large 
telecommunication system and found that modules age, 
changes made to module and the age of the changes were 
significantly correlated with the defect-proneness. However, no 
performance measure was used to evaluate the appropriateness 
of generalized linear regression for predicting the number of 
defects [16]. Wang et al. [61] presented BugStates, a method 
for predicting the number of defects at each state based on 
defect state transition models. Ostrand et al. [62] and Yu et al. 
[63] employed negative binomial regression (NBR) model to 
predict the number of defects. They found that NBR is 
effective in predicting the number of defects. Janes et al. [64] 
used three count models (Poisson regression, NBR, and zero-
inflated NBR) to predict the number of defects over five real-
time telecommunication systems. The results found that zero-
inflated NBR model achieved the best performance. Some 
researchers [12-15] used genetic programming (GP) to predict 
the number of defects and found that GP model produced 
significant predictive accuracy. Santosh et al. [16] explored the 
capability of decision tree regression (DTR) for predicting the 
number of defects in two different scenarios, intra-release 
prediction and inter-releases prediction for the given software 
system. The results showed that DTR model produced 
significant prediction accuracy for predicting the number of 
defects in both the considered scenarios. 

Gao et al. [65-66] performed a comprehensive empirical 
study of five count models for predicting the number of defects. 
The study was performed over two industrial software systems. 
The results found that zero-inflated negative binomial 
regression and hurdle negative binomial regression models 
produced better prediction accuracy. Chen et al. [17] performed 
an empirical study of six regression algorithms for predicting 
the number of defects and found that the prediction model built 
with decision tree regression had the highest prediction 
accuracy in terms of root mean square error (RMSE). In 
another similar study, Rathore et al. [12] presented an empirical 
study to evaluate and compare the other six regression 
algorithms for predicting the number of defects. The results 
found that decision tree regression, genetic programming, 
Bayesian ridge regression, and linear regression achieved better 
performance in terms of ARE and AEE. However, the 
imbalanced distribution of the target variable values (i.e., the 
number of defects) degrades the predictive accuracy, but has 
not received much attention. 

 

III. PRELIMINARIES 
In this section, we present SmoteND, RusND and 

AdaBoost.R2 to learn from imbalanced data for predicting the 
number of defects. Predicting the number of defects is a 
particular class of regression problem. In this context, given a 
software defect dataset S={(x1,y1), (x2,y2),…,(xn,yn)}, where xi 
is a feature vector representing the software metric values 
extracted from the ith instance, yi is the target variable, i.e., the 
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defect numbers of the ith instance, and n is the number of 
instances in S, our goal is to obtain a regression model y=F(x).  

A. SmoteDE 
The SMOTE was initially proposed to address 

classification problem with imbalanced class distribution. 
Torgo et al. [22] proposed a variant of SMOTE for addressing 
regression problem where the key goal is to accurately predict 
rare extreme values, which they named SmoteR. There are 
three key issues of SmoteR in order to adapt SMOTE for 
regression problem: (i) how to define the normal target variable 
values and the rare target variable values; (ii) how to create 
new synthetic instances (i.e., over-sampling); and (iii) how to 
decide the target variable values of these new synthetic 
instances.  

Regarding the first issue, SmoteR is based on a relevance 
function and on a user-specified threshold on the values of this 
function that leads to the definition of the rare target variable 
value. The instances with the rare target variable value are 
called as the rare instances, and the instances with the normal 
target variable value are called as the normal instances. For 
predicting the number of defects, we define the defective-prone 
modules as the rare instances and define non-defective modules 
as the normal instances. Regarding the second key issue, we 
use the same approach as in SMOTE and SmoteR to generate 
synthetic instances for predicting the number of defects. Finally, 
the third key issue is to decide the target variable value of the 
generated instances. In the original SMOTE algorithm, this is a 
trivial question, because all minority class instances have the 
same class, the same will happen to the instances generated 
from this set [22]. For regression task, the answer is not so 
trivial. The instances that are to be over-sampled do not have 
the same target variable value. This means that when a pair of 
instances are used to generate a new synthetic instance, they 
will not have the same target variable value. SmoteR uses a 
weighted average of the target variable values of the two seed 
instances. The weights are decided based on the distance 
between the synthetic instance and these two seed instances. 
The larger the distance is, the smaller the weight. For 
predicting the number of defects, we use the same approach in 
SmoteR to decide the number of defects of the synthetic 
instance.  

We refer to SmoteR for predicting the number of defects as 
SmoteND. Algorithm 1 presents the pseudo-code of SmoteND. 
If the number of the synthetic instances is less than the number 
of the original rare instances, we randomly select (n×ratio-m) 
rare instances to be used for generating new instances (Lines 1-
3). Otherwise,  neighbors from the k nearest 
neighbors are randomly chosen (Line 6). In this paper, we 
choose k as 5. This setting is suggested by Chawla et al. [19].  
For example, if we want to generate 2×m rare instances, only 
two neighbors from the five nearest neighbors are chosen and 
one instance is generated in the direction of each.  The key 
aspect of this algorithm is the generation of the synthetic 
instance. The feature vector of the synthetic instance is 
generated in the following way (Line 11): Take the difference 
of the feature vector between of the ith rare instance and its 
nearest neighbor. Multiply this difference by a random number 
between 0 and 1, and add it to the feature vector of the ith rare 

instance. The number of defects of the synthetic instance is a 
weighted average of the number of defects of the two seed 
instances (Lines 12-14). The weights are calculated as an 
inverse function of the distance of the generated instance to 
each of the two seed instances. 

B. RusND 
The RUS was initially proposed to address classification 

problem with imbalanced class distribution. The basic idea of 
RUS is to decrease the number of the normal instances to 
balance the ratio between the rare instances and the normal 
instances. Different from adapting SMOTE for regression 
problem, how to define the normal instances and the rare 
instances is the only key issue in order to adapt RUS for 
regression problem, because RUS does not involve generating 
new synthetic instances. Regarding the key issue, as we have 
mentioned in Section III-A, we define the defective-prone 
modules as the rare instances and define non-defective modules 

Algorithm 1.  SmoteND 
Input: Defect dataset S={(x1, y1), (x2, y2),…,(xn, yn)}

              Number of the rare instances, m 

Desired ratio between the rare instances and the 
normal instances, ratio 

Number of nearest neighbors, k 

Output: Set O of  the synthetic rare instances 

1. if  ratio<2×[m/(n-m)]  

2.    Randomize the m rare instances; 

3.    m=  ratio×(n-m)-m; 

4.    index=1; 

5. else 

6.    index=(int) (  );  

7. for i =1 to m do 

8.    Calculate k nearest neighbors for i ; 

9.    while index  0 

10.       Choose a random number between 1 and k, call it nn ; 

11.       xsynthetic=xi+Random(0,1)×(xnn-xi); 

12.       d1 DIST(xsynthetic, xi); 

13.       d2 DIST(xsynthetic, xnn); 

14.       ysynthetic=  ; 

15.       Add (xsynthetic,ysynthetic) to O; 

16.       index--; 

17.    end while 

18. end for 

19. return  Set O of  the synthetic rare instances; 
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as the normal instances. We refer to RUS for predicting the 
number of defects as RusND. 

The procedure of RusND is as follows:  

(1) Determine the number p of selected normal instances 
according to the ratio between the rare instances and the 
normal instances; 

(2) Randomly select p instances from the normal instances; 

(3) Combine the selected normal instances and all the rare 
instances to obtain the training dataset. 

 Compared to SmoteND, the main drawback of RusND is 
the loss of information that comes with deleting instances from 
the training data [67]. It has the benefit, however, of decreasing 
the time required to train the regression model since the size of 
the training data set is reduced. On the other hand, SmoteND 
results in no lost information, but it increases model training 
times. 

C. AdaBoost.R2 
 Ensemble learning combines a series of k weak learners 
with the aim of creating a composite prediction model to 
improve prediction accuracy. This paper uses AdaBoost.R2, 
which is a well-known boosting algorithm for regression 
problem. We present a brief description of the AdaBoost.R2 
algorithm in this work due to the space limit. For the complete 
details of the AdaBoost.R2 algorithm, please refer to Harris 
Drucker’s work [24]. 

Initially, AdaBoost.R2 assigns each instance from the 
training data set S an equal weight. Generating k weak 
regression models for the ensemble requires k rounds through 
the rest of the algorithm. In round i, the instances from S are 
sampled to form a training set, Si, of size |S|.  A weak 
regression model, Mi, is derived from the training instances of 
Si. Next, a so-called loss function is introduced to compute the 
performance of the weak regression model using S as a test set. 
All the weights of the training instances are then updated 
according to the loss function. The process is repeated until a 
preset number of weak regression models are constructed or 
the average loss is less than 0.5. Finally, the output from 
different weak regression models will be combined to produce 
single prediction. The final output is the weighted median of 
the weak regression models’ results.   

In this paper, all boosting algorithms (Adaboost.R2, 
SmoteNDBoost, and RusNDBoost) are performed using fifty 
iterations. Preliminary experiments with the three algorithms 
using more iterations did not result in significant improvement. 

 

IV. EXPERIMENT SETUP 

A. Data set 
In this experiment, we employ 6 available and commonly 

used software project datasets with their 22 releases which can 
be obtained from PROMISE [67]. The details about the 
datasets is shown in Table I, where #Instance represents the 
number of instances in the release, #Defects represents the total 
number of defects in the release, %Defect represents the 
percentage of defective-prone instances in the release, Max is 

the maximum value of defects in the release, Avg is the average 
value of defects of all defective-prone instances in the release. 
There are the same 20 independent variables (i.e., the 20 
software metrics) and one dependent variable (i.e., the number 
of defects) in the six datasets. For the complete details of the 
software metrics, please refer to [65-66]. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Release #Instance #Defects %Defects Max Avg 

Ant 

1.3 125 33 16.0% 3 1.65 
1.4 178 47 22.5% 3 1.18 
1.5 293 35 10.9% 2 1.09 
1.6 351 184 26.2% 10 2.00 
1.7 745 338 22.3% 10 2.04 

Camel 

1.0 339 14 3.4% 2 1.08 
1.2 608 522 35.5% 28 2.42 
1.4 872 335 16.6% 17 2.31 
1.6 965 500 19.5% 28 2.66 

Jedit 

3.2 272 382 33.1% 45 4.24 
4.0 306 226 24.5% 23 3.01 
4.1 312 217 25.3% 17 2.75 
4.2 367 106 13.1% 10 2.21 
4.3 492 12 2.2% 2 1.09 

Synapse 
1.0 157 21 10.2% 4 1.31 
1.1 222 99 27.0% 7 1.65 
1.2 256 145 33.6% 9 1.69 

Xalan 
2.4 723 156 15.2% 7 1.42 
2.5 803 531 48.2% 9 1.37 
2.6 885 625 46.4% 6 1.52 

Log4j 1.0 135 61 25.2% 9 1.79 
1.1 109 86 33.9% 9 2.32 

B. Learners 
This paper employs three regression models to predict the 

number of defects, Decision Tree Regression (DTR), Bayesian 
Ridge Regression (BRR), and Linear Regression (LR). The 
first reason we choose these regression models is that these 
models achieved better performance in most cases for 
predicting the number of defects [11-12]. The second reason 
we choose these regression models is that these models fall into 
three different families of learning methods. DTR is a decision-
tree model [69]; BRR is a probabilistic model [68]; and LR is a 
statistical model [70]. 

It is worthy of note that we implement these three 
individual regression models based on the python machine 
learning library sklearn. We use the default parameter settings 
specified by sklearn for these models. That is, we do not 
perform additional optimizations for these models. 

C. Performance measures 
Previous studies [17], [65], [66] have employed some 

performance measures, such as average absolute error (AEE), 
average relative error (ARE), and root mean square error 
(RMSE) for evaluating the performance of models for 
predicting the number of defects. Using imbalanced defect data 
to derive a regression model and then estimate the error value 
of the resulting learned model can result in misleading over-
optimistic estimates due to over-specialization of the learning 
algorithm to the imbalanced defect data. Suppose that we have 
trained a regression model to predict the number of defects in 
the project Ant 1.3, which contains 124 instances and 33 
defects. An AEE value of, say, 0.264 (=33/124) may make the 
regression model seem quite accurate. But, an AEE value of 

82



 
 
 

0.264 may not be acceptable—the regression model could 
predict the number of defects of all instances to be zero. 
Therefore, we need other performance measures. 

Yang et al. [71] pointed out that predicting the precise 
number of defects of a module is hard to do due to the lack of 
good quality data in practice. Actually, for those existing 
approaches that tried to predict explicitly the number of defects 
in a software module, they used these predicted numbers to 
rank the modules anyway, to direct the software quality 
assurance team in targeting the most faulty modules first [15], 
[65], [72], [73]. In the beginning, the percentage of defects 
contained in the 20% of modules predicted to have the most 
faults was used to assess predictive accuracy [15]. However, 
the performance can be sensitive to the arbitrary cutoff value of 
20%. Testing resources may be sufficient for testing the first 40% 
modules, or resources can test only the first 5% modules. 
Hence, Weyukers et al. [72] proposed fault-percentile-average 
(FPA) to reflect the effectiveness of the different prediction 
models across all values of the cutoff, and You et al. [73] 
employed Spearman’s rank correlation coefficient and Kendall 
rank correlation coefficient [74] as the performance measure. 

In the experiment, we employ Kendall rank correlation 
coefficient (Kendall for short) and FPA to measure the 
performance.  

Kendall: Kendall rank correlation coefficient is a statistic 
used to measure the ordinal association between two measured 
quantities. Let (x1, y1), (x2, y2), …, (xn, yn) be a set of 
observations of the joint random variables X and Y respectively. 
In this paper, xi and yi are the actual number of defects and the 
predicted number of defect in ith instance, respectively. Any 
pair of observations (xi, yi) and (xj, yj), where i j, are said to be 
concordant if the ranks for both elements agree: that is, if both 
xi>xj and yi>yj ; or if both xi<xj and yi<yj. They are said to be 
discordant, if xi>xj and yi<yj; or if xi<xj and yi>yj. If xi=xj or yi=yj, 
the pair is neither concordant nor discordant. The Kendall  
coefficient is defined as: 

=  

FPA: Considering k modules listed in increasing order of 
predicted defect number as f1, f2, f3 ,…, fk, and assuming that ni 
is the actual defect number in the module i, n=n1+n2+…+nk is 
the total number of defects, and the top predicted modules 
should have  defects. The proportion of the actual 
defects in the top m predicted modules to the whole defects is 

. 

Then the FPA is define as  
      . 

FPA is actually the average of the proportions of actual 
defects in the top modules to the whole defects, which is a 
more comprehensive performance measure than the percentage 
of defects in the top 20% modules. A higher FPA means a 
better ranking, where the modules with most defects come first. 

D. Experimental Design Summary 
All experiments are performed using tenfold cross-

validation. We merge the different releases of a project as a 

dataset and divide the dataset into ten folds of approximately 
equal size, nine of which are used to build the regression model, 
while the remaining partition is used to test the model. This 
cross-validation is repeated ten times so that each partitions are 
used exactly once as the test data. In this paper, we set the 
desired ratio between the rare instances and the normal 
instances as 100% for SmoteND and RusND. The above 
procedure is repeated 20 times in total to avoid sample bias. 
Overall performance measure for all approaches is estimated 
by averaging the results over 20 runs of tenfold cross-
validation.  

 

V. EXPERIMENT RESULTS 
In this section, we present the experiment results to answer 

the first research question mentioned in Section I. Table II 
records the average Kendall and FPA of all 6 datasets with 
four different approaches on three regression models DTR, 
BRR and LR. W/D/L (Kendall), short for Win/Draw/Loss 
(Kendall), presents the number of datasets, on which the 
approach in this column performs better than, the same as, or 
worse than None, in terms of Kendall. In the same way, 
W/D/L (FPA), short for Win/Draw/Loss (FPA), presents the 
number of datasets, on which the approach in this column 
performs better than, the same as, or worse than None, in 
terms of FPA. For example, the data of the four column of the 
four row is 5/0/1, it indicates that RusND outperforms None 
on 5 datasets and fails on 1 dataset in terms of FPA. For a 
more detailed description of the entire distribution of 
prediction performance across all datasets, Fig.1 and Fig.2 
show the box-plots of Kendall and FPA values, with the four 
approaches for three regression models on the 6 datasets. 

 
TABLE II. AVERAGE PERFORMANCE OF 6  DATASETS WITH  THREE 

REGRESSION MODELS ON KENDALL AND FPA 

Model M SmoteND RusND AdaBoost.R2 None 

DTR 

Kendall 0.345 0.307 0.354 0.232 
FPA 0.718 0.718 0.710 0.626 

W/D/L(Kendall) 6/0/0 6/0/0 6/0/0  
W/D/L(FPA) 6/0/0 5/0/1 3/0/3  

BRR 

Kendall 0.321 0.318 0.289 0.310 
FPA 0.769 0.768 0.746 0.758 

W/D/L(Kendall) 4/1/1 4/0/2 0/0/6  
W/D/L(FPA) 6/0/0 6/0/0 0/0/6  

LR 

Kendall 0.323 0.313 0.256 0.303 
FPA 0.768 0.763 0.725 0.754 

W/D/L(Kendall) 6/0/0 6/0/0 0/0/6  
W/D/L(FPA) 6/0/0 6/0/0 0/0/6  

 
Our experimental results are in tune with the intuitive idea 

that resampling techniques and ensemble learning techniques 
improve the performance of models for predicting the number 
of defects. We can gain the following results from Table II and 
Figures 2-3. 

(1) For DTR model, SmoteND and RusND achieves the 
best average FPA value, but fails in the best Kendall. But, the 
median value by RusND is higher than that by SmoteND. 
Regarding to the average Kendall, AdaBoost.R2 performs best. 
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The Win/Draw/Loss values show that, on three regression 
models, SmoteND, RusND, and AdaBoost.R2 outperform 
None on over half of datasets in terms of Kendall and FPA. 

(2) For BRR model, AdaBoost.R2 is worse than None. That 
is, AdaBoost.R2 does not significantly improve the 
performance of the baseline learner and, in some cases, can 
hurt the performance. Despite this, SmoteND significantly 
improves the performance of this learner and achieves the best 
Kendall and FPA values. The Win/Draw/Loss values show that, 
on three regression models, SmoteND and RusND outperform 
None on over half of datasets in terms of Kendall and FPA.  

 
Figure 2.  Box-plots for Kendall on 6 datasets with three regression models. 

 
Figure 3.  Box-plots for FPA on 6 datasets with three regression models. 

(3) For LR model, SmoteND performs better FPA values 
than all the other approaches. The Win/Draw/Loss values 

show that, on three regression models, SmoteND and RusND 
outperform None on all datasets in terms of Kendall and FPA. 
But, AdaBoost.R2 is worse than None. That is, AdaBoost.R2 
does not significantly improve the performance of the baseline 
learner and, in some cases, can hurt the performance. 

 

To sum up, in almost all situations, SmoteND and 
RusND are significant than None. That is, the 
improvements obtained by resampling are not specific to 
any single learner or performance measures. With the 
exception of BRR and LR, AdaBoost.R2 generally 
performs similar to or better than None. Therefore, we 
can conclude that resampling techniques and ensemble 
learning techniques are good solutions to predict the 
number of defects. 

 

VI. SMOTENDBOOST AND RUSNDBOOST 
To further improve the performance of SmoteND, RusND 

and AdaBoost.R2, we propose SmoteNDBoost and 
RusNDBoost, which introduce SmoteND and RusND into the 
AdaBoost.R2 algorithm to learn from imbalanced data for 
predicting the number of defects. 

A. SmoteNDBoost 
Inspired by the SMOTEBoost algorithm [58], we propose a 

SmoteNDBoost algorithm that combines SmoteND and the 
AdaBoost.R2 algorithm. We want to utilize SmoteND to 
balance the data distribution, and we want to employ 
AdaBoost.R2 to improve the overall predictive performance 
using these balanced data.  

Algorithm 2 presents the pseudo-code of SmoteNDBoost.  

(1) In step 1, the weights of each instance are initialized to 
1/n, where n is the number of instances in the training data set.   

(2) In step 2, the average loss function  is initialized to 0.  

(3) In step 3, T weak regression models are iteratively 
trained, as shown in steps 3a–3h. In step 3a, SmoteND is 
applied to create synthetic instances from rare instances until 
the new (temporary) training data set St’ accord with the 
desired ratio between the rare instances and the normal 
instances. For example, if the desired ratio between the rare 
instances and the normal instances is 50:50, then the synthetic 
instances are created until the numbers of the rare instances and 
the normal instances are equal. As a result, St’ will have a new 
weight distribution Dt’. Introducing SmoteND in each round of 
boosting will enable learner to learn from more of the rare 
instances. It is worthy to note that the synthetic instances are 
discarded after training a weak learner (step 3b) at iteration t. 
That is, they are not added to the original defect dataset. 
Therefore, we produce a different set of synthetic instances in 
each iteration, which increases the diversity amongst the 
regression models in the ensemble. After each boosting 
iteration, the error-estimation is on the original defect dataset S 
(steps 3c-3e). In step 3g, the weight update parameter t is 
calculated as /(1- ). Next, the weight distribution for the 
next iteration Dt+1 is updated (step 3h).  
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(4) After T iterations of step 3, the final prediction model 
F(x) is returned as a weighted vote of the T weak learner (step 
4). 

B. RusNDBoost 
RusNDBoost is based on the SmoteNDBoost algorithm, 

which is, in turn, based on the AdaBoost.R2 algorithm. 
SmoteNDBoost improves upon AdaBoost.R2 by introducing 
SmoteND, which helps to balance the distribution, while 
AdaBoost.R2 improves the overall predictive performance 
using these balanced data. The difference between 
RusNDBoost and SmoteNDBoost is that RusNDBoost applies 
RusND to the training data to achieve a more balanced training 
data set while SmoteNDBoost applies SmoteND. Therefore, 
Algorithm 2 can be modified to represent the RusNDBoost 
algorithm by changing step 3a to  

Create a temporary training dataset St’ with distribution 
Dt’ using RusND; 

 

The RusNDBoost algorithm can overcome two drawbacks 
of SmoteNDBoost. First, RusNDBoost decreases the 
complexity of the algorithm. SmoteND must find the k nearest 
neighbors of the rare instance and extrapolate between them to 
make new instances. On the other hand, RusND simply deletes 
the normal instances at random. Second, since SmoteND adds 
the synthetic instances to the training dataset, it results in 
longer model training times. The effect is compounded by 
SmoteNDBoost’s use of boosting. On the other hand, RusND 
results in smaller training data sets and, therefore, shorter 
model training times of RusNDBoost. 

C. Experimental Results 
In this paper, we set the desired ratio between the rare 

instances and the normal instances as 100% for SmoteNDBoost 
and RusNDBoost. The ten-fold cross validation is repeated 20 
times in total for SmoteNDBoost and RusNDBoost to avoid 
sample bias. Overall performance measures for SmoteNDBoost 
and RusNDBoost are estimated by averaging the results over 
20 runs of tenfold cross-validation. Then, SmoteNDBoost and 
RusNDBoost are compared to their individual components 
(SmoteND, RusND and AdaBoost.R2) and None.  

We perform the Wilcoxon signed-rank test [75] to analyze 
whether the performance values of SmoteNDBoost and 
RusNDBoost is statistically significant different with those of 
the compared approaches on three regression models over all 
datasets. The Wilcoxon signed-rank test is a non-parameter 
method of statistically significant test. For the performance 
values of two approaches compared, the null hypothesis is that 
there exists no significant difference between the two 
approaches. If the p-value that results from Wilcoxon test is 
less than 0.05, the null hypothesis is rejected. That is, the 
difference between the two approaches is identified as 
statistically significant. The significant test is implemented in 
IBM SPSS Statistics [76]. In additional, we compute the effect 
size, Hedges’g [77], to quantify the amount of difference 
between two approaches. A positive Hedges’g indicates that 
the performance of the prevision approach has a greater effect 
than that of the latter approach. 

Tables III, IV, and V present the detailed FPA values of 
each datasets on three regression models with the p-values and 
Hedges’g values. The row labeled “p-value (1)” and the row 
labeled “Hedges’g (1)” present the comparison results between 
SmoteNDBoost and other approaches. The row labeled “p-
value (2)” and the row labeled “Hedges’g (2)” present the 
comparison results between RusNDBoost and other approaches. 

The following observations are derived from the data in 
Tables III, IV, and V. 

(1) In almost all situations, both SmoteNDBoost and 
RusNDBoost perform significantly better than SmoteND, 
RusND, and AdaBoost.R2. In other words, the application of 
hybrid resampling/boosting is better than resampling and 
boosting alone, and the improvements obtained by hybrid 
resampling/boosting are not specific to any single learner. 

(2) SmoteND and RusND are significantly better than 
AdaBoost.R2 and None on the three regression models. 

Algorithm 2.  SmoteNDBoost 
Input:   Defect dataset S={(x1, y1), (x2, y2),…,(xn, yn)}

Desired ratio between the rare instances and the 
normal instances, ratio 

 Number of nearest neighbors, k 

 Weak Learner, WeakLearn 

 Number of iterations, T 

Output:  a prediction model F(x) 

1. Initialize D1(i)=1/n for all i; 

2. Initialize average loss function 0; 

3. for t =1 to T do 

(a) Create a temporary training dataset St’ with 
distribution  Dt’ using SmoteND; 

(b) Train a weak learner y=ft(x) using St’ and its 
distribution  Dt’; 

(c)  Calculate the loss for each training instance in S as 
It(i)=| ft(xi)-yi|; 

   (d) Calculate the loss function Lt(i)=  for each 
training instance in S where Denomt= It(i)); 

(e)  Calculate the average loss  t(i)Dt(i); 

(g)  Set t= /(1- ); 

(h) Update distribution Dt as Dt+1(i)=  , 
where Zt is a normalization factor such that Dt+1 
will be a distribution; 

4. Output the final prediction model: 

F(x)=inf  
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(3) There is no significant difference between the 
performances of SmoteND and RusND. The average FPA 
values of SmoteND and RusND on the three regression models 
are very similar.  

(4) While there is no significant difference between the 
performances of SmoteND and RusND, it is not the case that 
the performances between SmoteNDBoost and RusNDBoost 
are similar. With DTR and LR as the base learner, 
RusNDBoost outperforms SmoteNDBoost. With BRR as the 
base learner, SmoteNDBoost is preferred over RusNDBoost. 

TABLE III.  FPA VALUES ON  6  DATASETS USING DTR 

Project SmoteNDBoost RusNDBoost SmoteND RusND AdaBoost.R2 None
Ant 0.749 0.757 0.71 0.724 0.715 0.61

Camel 0.698 0.725 0.719 0.691 0.693 0.615
Jedit 0.760 0.812 0.787 0.785 0.76 0.671

Synapse 0.689 0.718 0.695 0.718 0.686 0.608
Xalan 0.676 0.659 0.635 0.641 0.634 0.584
Log4j 0.772 0.775 0.762 0.747 0.775 0.668
Avg 0.724 0.741 0.718 0.718  0.710 0.626

p-value(1)  0.116 0.600 0.596 0.104 0.028
Hedges’g(1)  -0.359 0.126 0.140 0.289 2.557
p-value(2) 0.116  0.028 0.043 0.420 0.270

Hedges’g(2) 0.359  0.434 0.458 0.583 2.558

TABLE IV.  FPA VALUES ON  6  DATASETS USING BRR 

Project SmoteNDBoost RusNDBoost SmoteND RusND AdaBoost.R2 None
Ant 0.828 0.811 0.809 0.808 0.786 0.803

Camel 0.776 0.740 0.732 0.728 0.711 0.714
Jedit 0.851 0.821 0.838 0.836 0.804 0.831

Synapse 0.732 0.753 0.720 0.721 0.698 0.709
Xalan 0.702 0.699 0.689 0.687 0.669 0.683
Log4j 0.83 0.840 0.827 0.827 0.808 0.807
Avg 0.787  0.777  0.769  0.768  0.746  0.758 

p-value(1)  0.345 0.027 0.027 0.028 0.027
Hebdges’g(1)  0.159 0.282 0.303 0.673 0.467

p-value(2) 0.345  0.249 0.248 0.028 0.075
Hedges’g(2) -0.159  0.138 0.160 0.543 0.331

TABLE V.  FPA VALUES ON  6  DATASETS USING LR  

Project SmoteNDBoost RusNDBoost SmoteND RusND AdaBoost.R2 None
Ant 0.819 0.826 0.806 0.803 0.764 0.797

Camel 0.736 0.759 0.736 0.728 0.704 0.714
Jedit 0.841 0.853 0.839 0.835 0.784 0.832

Synapse 0.747 0.747 0.726 0.72 0.670 0.708
Xalan 0.701 0.716 0.685 0.681 0.651 0.678
Log4j 0.819 0.821 0.815 0.808 0.775 0.794
Avg 0.777 0.787 0.768 0.763 0.725 0.754

p-value(1)  0.043 0.043 0.028 0.028 0.027
Hebdges’g(1)  -0.178 0.159 0.250 1.230 0.394

p-value(2) 0.043  0.028 0.028 0.028 0.028
Hedges’g(2) 0.178  0.335 0.426 1.450 0.573
 

 Figure 4 shows the box-plot of Kendall values, with the six 
approaches for three regression models on the 6 datasets. We 
can gain the following results from Figure 4. 

(1) For DTR model, the median values by SmoteNDBoost 
and RusNDBoost are higher than that by SmoteND, RusND, 
AdaBoost.R2 and None. In addition, the maximum value by 
SmoteNDBoost is much higher than that by other approaches, 
except AdaBoost.R2. 

(2) For BRR model, the median value by SmoteNDBoost is 
much higher than that by other approaches, while the median 
value by RusNDBoost is a little lower than that by SmoteND. 
In addition, the maximum values by SmoteNDBoost and 
RusNDBoost is higher than that by AdaBoost.R2 and None 
and a little lower than that by SmoteND and RusND. 

(3) For LR model, the median value by RusNDBoost is 
much higher than that by all other approaches, and the median 
value by SmoteNDBoost is a little lower than AdaBoost.R2. 
The maximum values by SmoteNDBoost and RusNDBoost are 
higher than that by other approaches, except AdaBoost.R2 and 
SmoteND. 

 
Figure 4.  Box-plots for Kendall on 6 datasets with three regression models. 

  Finally, we directly compare SmoteNDBoost and 
RusNDBoost in Table VI. We revert to computing a standard t-
statistic [78] to compare the means of these two approaches to 
obtain a more precise comparison. Table VI compares only 
SmoteNDBoost and RusNDBoost, with a two-sample t-statistic 
calculated for each learner and data set, presented by a 
performance metric. Therefore, each column totals to 18 (3 
learners × 6 datasets), and in total, 36 pairwise comparisons 
between SmoteNDBoost and RusNDBoost were performed, 
each with a 95% confidence level. The first row represents the 
number of times that SmoteNDBoost significantly outperforms 
RusNDBoost, the second row is the number of times that 
RusNDBoost significantly outperforms SmoteNDBoost, and 
the final row represents the cases with no significant difference 
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between SmoteNDBoost and RusNDBoost. Overall, 
SmoteNDBoost is comparably to RusNDBoost, particularly 
relative to the Kendall and FPA performance measure. 
However, SmoteND’s main drawback (increasing the model 
training time due to larger training data sets) is amplified by its 
combination with AdaBoost.R2. Given the similar performance 
between SmoteNDBoost and RusNDBoost, one would prefer 
the simpler and faster approach: RusNDBoost. 

TABLE VI.  T-TEST COMPARISON OF SMOTENDBOOST AND RUSNDBOOST

 Kendall FPA Total 
SmoteNDBoost 3 4 7 
RusNDBoost 4 5 9 

Neither 11 9 20 
 

 

To sum up, in almost all situations, both 
SmoteNDBoost and RusNDBoost perform significantly 
better than SmoteND, RusND, AdaBoost.R2 and None, 
and RusNDBoost performs comparably to 
SmoteNDBoost while being a simpler and faster 
approach. 

 

VII. THREATS TO VALIDITY 
In this section, we discuss several validity threats that may 

have an impact on the results of our studies. 

External validity. Threats to external validity occur when 
the results of our experiments cannot be generalized. Although 
these datasets have been widely used in many software defect 
prediction studies, we still cannot claim that our conclusion can 
be generalized to other datasets. Another threat is the choice of 
the desired ratio between the rare instances and the normal 
instances. In this paper, we choose 5 different desired ratios 
(i.e., 80%, 90%, 100%, 110%, and 120%). For different 
datasets, the best desired ratio might be different, which might 
lead to different results. 

Internal validity.  We list several concerns about the bias 
in regression models selection and the incorrect 
implementation process of experiments. To avoid these threats, 
we choose three state-of-the-art regression models, which 
represent three categories: BRR as a probabilistic model, DTR 
a decision-tree model, LR as a statistical model. For the 
implementation, we use the python machine learning library 
sklearn to avoid the potential faults during the implementation 
process of the experiment.  

Construct validity. Threats to construct validity focus on 
the bias of the measures used to evaluate the prediction 
performance. In our experiments, we employ Kendall rank 
correlation coefficient and FPA as the evaluation measures. 
Nonetheless, other evaluation measures such as Spearman’s 
rank correlation coefficient and cost effectiveness graph [79] 
can also be considered. 

Conclusion validity. Threats to conclusion validity focus 
on the statistical analysis method. In this work, we use 
Wilcoxon signed-rank test to statistically analyze the six 

approaches and a standard t-statistic test to compare 
SmoteNDBoost and RusNDBoost. 

 

VIII. CONCLUSION AND FUTURE WORK 
Predicting the number of defects in software modules can 

be more helpful instead of predicting the modules being 
defective-prone or not. The imbalanced distribution of the 
target variable values (i.e., the number of defects) is the main 
cause of its learning difficulty, but has not received much 
attention. As the first effort of an in-depth study, this paper 
studies whether and how resampling techniques and ensemble 
learning techniques can improve the performance of models for 
predicting the number of defects. We investigate two extended 
resampling techniques (i.e., SMOTE and RUS) for regression 
tasks and an ensemble learning technique (i.e., AdaBoost.R2) 
in comparison with three top-ranked regression models (DTR, 
BRR, and LR). Experiments on 6 widely-studied project 
datasets with two performance measures indicate that 
resampling techniques and ensemble learning techniques can 
contribute to improving the performance of models for 
predicting the number of defects. 

To further improve the prediction performance, we propose 
two novel hybrid resampling/boosting algorithms called 
SmoteNDBoost and RusNDBoost, to alleviate the problem of 
imbalanced data distribution for predicting the number of 
defects. We evaluate SmoteNDBoost and RusNDBoost, as well 
as their individual components (SmoteND, RusND and 
AdaBoost.R2). Experimental results show that both 
SmoteNDBoost and RusNDBoost perform significantly better 
than SmoteND, RusND, and AdaBoost.R2. RusNDBoost 
performs comparably to SmoteNDBoost, while being a simpler 
and faster approach.  

 Further work from this paper includes the investigation of 
other resampling techniques and ensemble learning techniques. 
Currently, this paper only considers SMOTE, RUS, and 
AdaBoost.R2. In addition, as mentioned in Section I, a test 
team can allocate limited testing resources according to the 
order of new modules based on the predicted numbers of 
defects, which ignores the module size, testing cost, and 
severity of defects. Some applications might prefer allocating 
limited testing resources according to the severity of defects, or 
require the test team to consider testing cost. This will be one 
of our future research interests. Moreover, we plan to apply our 
method to a real-life application [80-81]. 

 

ACKNOWLEDGMENT 
The authors would like to acknowledge the support 

provided by the grands of the National Natural Science 
Foundation of China (61572374, No.U163620068, U1135005), 
and Academic Team Building Plan for Young Scholars from 
Wuhan University (WHU2016012). 

REFERENCES 
[1] F. Rahman, D. Posnett, and P. Devanbu Recalling the imprecision of 

cross-project defect prediction. In Proceedings of the ACM SIGSOFT 

87



 
 
 

20th International Symposium on the Foundations of Software 
Engineering, 61,2012. 

[2] K. Gao, T.M. Khoshgoftaar, and H. Wang. Choosing software metrics 
for defect prediction: an investigation on feature selection techniques.  
Software Practice & Experience,41(5):579-606, 2011. 

[3] M. Shepperd, D. Bowes, and T. Hall. Researcher Bias: The Use of 
Machine Learning in Software Defect Prediction. IEEE Transactions on 
Software Engineering,40(6):603-616, 2014. 

[4] Q. Song, Z. Jia, and M. Shepperd. A general software defect proneness 
prediction framework, Software Engineering. IEEE Transactions on 
Software Engineering, 37(3): 356-370, 2011. 

[5] X. Yang, K. Tang, and X. Yao. A Learning-to-Rank Approach to 
Software Defect Prediction. IEEE Transactions on Reliability,64(1): 
234-246, 2015. 

[6] C. Catal. Software fault prediction: A literature review and current 
trends. Expert systems with applications, 38(4): 4626-4636, 2011. 

[7] R. Malhotra. A systematic review of machine learning techniques for 
software fault prediction, Applied Soft Computing, 27: 504-518, 2015. 

[8] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of 
machine learning in software defect prediction. IEEE Transactions on 
Software Engineering, 40(6): 603-616, 2014. 

[9] Guo L, Ma Y, Cukic B, et al. Robust prediction of fault-proneness by 
random forests. In 15th International Symposium on Software Reliability 
Engineering (ISSRE). IEEE, 2004: 417-428.  

[10] Lu H, Kocaguneli E, Cukic B. Defect prediction between software 
versions with active learning and dimensionality reduction. In 25th 
International Symposium on Software Reliability Engineering (ISSRE),. 
IEEE, 2014: 312-322.  

[11] N. E. Fenton and M. Neil. A critique of software defect prediction 
models. IEEE Transactions on software engineering, 25(5): 675-689, 
1999. 

[12] S. S. Rathore and S. Kumar. An empirical study of some software fault 
prediction techniques for the number of faults prediction. Soft 
Computing, 1-18, 2016. 

[13] Rathore S S and Kuamr S. Comparative analysis of neural network and 
genetic programming for number of software faults prediction. National 
Conference on Recent Advances in Electronics & Computer Engineering 
(RAECE), 328-332, 2015. 

[14] W. Afzal, R. Torkar, and R.Feldt. Prediction of fault count data using 
genetic programming. Multitopic Conference, 2008. INMIC 2008. IEEE 
International. IEEE, 2008. 

[15] S. S. Rathore and S. Kumar. Predicting number of faults in software 
system using genetic programming. Procedia Computer Science, 62: 
303-311, 2015. 

[16] S. S. Rathore and S.Kumar. A Decision Tree Regression based 
Approach for the Number of Software Faults Prediction. ACM SIGSOFT 
Software Engineering Notes, 41(1): 1-6, 2016.  

[17] M. Chen and Y. Ma. An empirical study on predicting defect numbers. 
In Proceedings of the 28th International Conference on Software 
Engineering and Knowledge Engineering, 397-402, 2015. 

[18] Wang, Shuo, and X. Yao. Using class imbalance learning for software 
defect prediction. IEEE Transactions on Reliability, 62(2): 434-443, 
2013. 

[19] Chawla and V. Nitesh. SMOTE: synthetic minority over-sampling 
technique. The Journal of artificial intelligence research, 16: 321-357, 
2002. 

[20] L. Breiman. Bagging predictors. Machine learning, 24(2): 123-140, 
1996. 

[21] Freund, Yoav, and E. Robert. Schapire. Experiments with a new 
boosting algorithm. icml, 96: 148-156, 1996. 

[22] L. Torgo, P. Branco, and R. P. Ribeiro. Resampling strategies for 
regression. Expert Systems, 32(3): 465-476, 2015.  

[23] L. Torgo, R. P. Ribeiro, and B. Pfahringer. Smote for regression. 
Portuguese conference on artificial intelligence. Springer Berlin 
Heidelberg, 378-389, 2013.  

[24] Drucker and Harris. Improving regressors using boosting techniques. 
ICML. Vol. 97, 1997. 

[25] K. Elish and M. Elish. Predicting defect-prone software modules using 
support vector machines. Journal of Systems and Software, 81(5):649-
660, 2008. 

[26] D. Gray, D. Bowes, and N. Davey. Using the support vector machine as 
a classification method for software defect prediction with static code 
metrics. International Conference on Engineering Applications of 
Neural Networks. Springer Berlin Heidelberg, 223-234, 2009. 

[27] Z. Yan, X. Chen, and P. Guo. Software defect prediction using fuzzy 
support vector regression. International Symposium on Neural Networks. 
Springer Berlin Heidelberg, 17-24, 2010. 

[28] M. M. T. Thwin and T. S.Quah. Application of neural networks for 
software quality prediction using object-oriented metrics. Journal of 
systems and software, 76(2): 147-156, 2005. 

[29] E. Paikari, M. M. Richter, and G.Ruhe. Defect prediction using case-
based reasoning: an attribute weighting technique based upon sensitivity 
analysis in neural networks. International Journal of Software 
Engineering and Knowledge Engineering, 22(06): 747-768, 2012. 

[30] V. Vashisht, M. Lal, and G. S. Sureshchanda. A framework for software 
defect prediction using neural networks. Journal of Software 
Engineering and Applications, 8(8): 384, 2015. 

[31] J. Wang, B. Shen, and Y.Chen. Compressed C4. 5 models for software 
defect prediction. In Proceedings of the 12th International Conference 
on Quality Software. IEEE, 13-16, 2012. 

[32] N. Seliya and T. M.Khoshgoftaar. The use of decision trees for cost
sensitive classification: an empirical study in software quality prediction. 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge 
Discovery, 1(5): 448-459, 2011. 

[33] T. Wang and W. Li. Naive bayes software defect prediction model. 
Computational Intelligence and Software Engineering(CISE). IEEE, 1-4, 
2010. 

[34] B. Turhan and A. B. Bener. Software Defect Prediction: Heuristics for 
Weighted Naïve Bayes. ICSOFT (SE), 244-249, 2007. 

[35] S. Amasaki and Y. Takagi, Mizuno O. A bayesian belief network for 
assessing the likelihood of fault content. In Proceedings of the 14th 
International Symposium on Software Reliability Engineering (ISSRE). 
IEEE, 215-226, 2003.  

[36] Fenton N, Neil M, and Marsh W. On the effectiveness of early life cycle 
defect prediction with Bayesian Nets. Empirical Software Engineering, 
13(5): 499, 2008. 

[37] Okutan, Ahmet, and O. T. Y ld z. Software defect prediction using 
Bayesian networks. Empirical Software Engineering, 19(1): 154-181, 
2014. 

[38] Khoshgoftaar, M. Taghi, K. Gao, and N. Seliya. Attribute selection and 
imbalanced data: Problems in software defect prediction. In Proceedings 
of the 22th International Conference on Tools with Artificial Intelligence 
(ICTAI). IEEE International Conference on. Vol. 1. IEEE, 2010.  

[39] Ozturk, M. Maruf, and A. Zengin. HSDD: a hybrid sampling strategy for 
class imbalance in defect prediction data sets. In Proceedings of the 5th  
Future Generation Communication Technologies (FGCT). IEEE, 2016. 

[40] Pelayo, Lourdes, and S. Dick. Applying novel resampling strategies to 
software defect prediction. Fuzzy Information Processing Society, 2007. 
NAFIPS'07. Annual Meeting of the North American. IEEE, 2007. 

[41] L. Chen, B. Fang, and Z. Shang. Tackling class overlap and imbalance 
problems in software defect prediction. Software Quality Journal, 1-29, 
2016. 

[42] Estabrooks, Andrew, T. Jo, and N. Japkowicz. A multiple resampling 
method for learning from imbalanced data sets. Computational 
intelligence, 20(1): 18-36, 2004. 

[43] Zhou, Z. Hua, and X. Y. Liu. Training cost-sensitive neural networks 
with methods addressing the class imbalance problem. IEEE 
Transactions on Knowledge and Data Engineering, 18(1): 63-77, 2006. 

[44] Ting and K. Ming. An instance-weighting method to induce cost-
sensitive trees. IEEE Transactions on Knowledge and Data Engineering, 
14(3): 659-665, 2002. 

[45] T. M. Khoshgoftaar, E. Geleyn and L. Nguyen. Cost-sensitive boosting 
in software quality modeling, High Assurance Systems Engineering, 
2002. 7th IEEE International Symposium on. IEEE, 51-60, 2002.  

88



 
 
 

[46] J. Zheng. Cost-sensitive boosting neural networks for software defect 
prediction, Expert Systems with Applications, 37(6):4537-4543, 2010. 

[47] M. Liu, L. Miao, and D. Zhang. Two-stage cost-sensitive learning for 
software defect prediction. IEEE Transactions on Reliability, 63(2):676-
686, 2014.  

[48] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu. Dictionary 
learning based software defect prediction. In Proceedings of the 36th 
International Conference on Software Engineering (ICSE).ACM, 414-
423, 2014. 

[49] I. H. Laradji, M. Alshayeb, and L. Ghouti. Software defect prediction 
using ensemble learning on selected features. Information and Software 
Technology, 58: 388-402, 2015. 

[50] M. J. Siers and M. Z. Islam. Software defect prediction using a cost 
sensitive decision forest and voting, and a potential solution to the class 
imbalance problem. Information Systems, 51: 62-71, 2015. 

[51] T., Divya, and S. Agarwal. Prediction of defective software modules 
using class imbalance learning. Applied Computational Intelligence and 
Soft Computing, 2016: 6, 2016. 

[52] Wang, Shuo, H. Chen, and X. Yao. Negative correlation learning for 
classification ensembles. Neural Networks (IJCNN), The 2010 
International Joint Conference on. IEEE, 2010. 

[53] Wang, X. Benjamin, and N. Japkowicz. Boosting support vector 
machines for imbalanced data sets. Knowledge and information systems, 
25(1): 1-20, 2010. 

[54] Z. Sun, Q. Song, and X. Zhu. Using coding-based ensemble learning to 
improve software defect prediction. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C (Applications and Reviews), 42(6): 1806-
1817, 2012. 

[55] Wang, Huanjing, T. M. Khoshgoftaar, and A. Napolitano. A 
comparative study of ensemble feature selection techniques for software 
defect prediction. Machine Learning and Applications (ICMLA), 2010 
Ninth International Conference on. IEEE, 2010. 

[56] X. Xia, D. Lo, and E. Shihab. Elblocker: Predicting blocking bugs with 
ensemble imbalance learning, Information and Software Technology, 61: 
93-106, 2015. 

[57] T. L. Graves, A. F. Karr, and J. S. Marron. Predicting fault incidence 
using software change history. IEEE Transactions on software 
engineering, 26(7): 653-661, 2000. 

[58] N. V. Chawla, A. Lazarevic, and L. O. Hall. SMOTEBoost: Improving 
prediction of the minority class in boosting. European Conference on 
Principles of Data Mining and Knowledge Discovery. Springer Berlin 
Heidelberg, 107-119, 2003. 

[59] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse. RUSBoost: A hybrid 
approach to alleviating class imbalance. IEEE Transactions on Systems, 
Man, and Cybernetics-Part A: Systems and Humans, 40(1): 185-197, 
2010. 

[60] Domingos and Pedro. Metacost: A general method for making classifiers 
cost-sensitive. In Proceedings of the fifth ACM SIGKDD international 
conference on Knowledge discovery and data mining. ACM, 1999. 

[61] Wang, Jue, and H. Zhang. Predicting defect numbers based on defect 
state transition models. Empirical Software Engineering and 
Measurement (ESEM), 2012 ACM-IEEE International Symposium on. 
IEEE, 2012. 

[62] T. J. Ostrand, E. J. Weyuker and R. M. Bell. Predicting the location and 
number of faults in large software systems. IEEE Transactions on 
Software Engineering, 31(4): 340-355, 2005. 

[63] Yu L. Using negative binomial regression analysis to predict software 
faults: a study of apache ant, 2012.  

[64] A. Janes, M. Scotto, and W. Pedrycz. Identification of defect-prone 
classes in telecommunication software systems using design metrics, 
Information sciences, 176(24): 3711-3734, 2006. 

[65] K. Gao and T. M. Khoshgoftaar, A comprehensive empirical study of 
count models for software fault prediction. IEEE Transactions on 
Reliability, 56(2): 223-236, 2007. 

[66] T. M. Khoshgoftaar and K. Gao. Count models for software quality 
estimation. IEEE Transactions on Reliability, 56(2): 212-222, 2007. 

[67] G. Boetticher, T. Menzies and T. Ostrand, The PROMISE Repository of 
Empirical Software Engineering Data, 
<http://promisedata.org/repository>, 2007.  

[68] H. D. Vinod. A survey of ridge regression and related techniques for 
improvements over ordinary least squares. The Review of Economics 
and Statistics, 121-131, 1978. 

[69] W. J. Long, J. L. Griffith, and Selker H P. A comparison of logistic 
regression to decision-tree induction in a medical domain. Computers 
and Biomedical Research, 26(1): 74-97, 1993. 

[70] Seber, George AF, and Alan J. Lee. Linear regression analysis. Vol. 936. 
John Wiley & Sons, 2012. 

[71] Yang, Xiaoxing, K. Tang, and X. Yao. A learning-to-rank approach to 
software defect prediction. IEEE Transactions on Reliability, 64(1): 
234-246, 2015. 

[72] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Comparing the 
effectiveness of several modeling methods for fault prediction. 
Empirical Software Engineering, 15(3): 277-295, 2010. 

[73] You, Guoan and Y. Ma. A Ranking-Oriented Approach to Cross-Project 
Software Defect Prediction: An Empirical Study. 

[74] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2): 
81-93, 1938. 

[75] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics 
bulletin, 80-83, 1945. 

[76] A.P. Field. Discovering statistics using SPSS for Windows: Advanced 
techniques for the beginner. Discovering Statistics Using SPSS for 
Windows: Advanced Techniques for Beginners. Sage Publications, Inc., 
2000. 

[77] Kampenes, V. By, et al, A systematic review of effect size in software 
engineering experiments, Inform. Softw. Technol. 49.11 (2007) 1073-
1086. 

[78] Winer B J, Brown D R, Michels K M. Statistical principles in 
experimental design. New York: McGraw-Hill, 1971. 

[79] Jiang T, Tan L, Kim S. Personalized defect prediction. Automated 
Software Engineering (ASE), 2013 IEEE/ACM 28th International 
Conference on. IEEE, 2013. 

[80] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based 
hierarchical opportunistic routing protocol for WSNs. International 
Conference on Wireless Algorithms, Systems, and Applications. 
Springer, Berlin, Heidelberg, 2013: 175-185. 

[81] Liu Z, Niu X, Lin X, et al. A Task-Centric Cooperative Sensing Scheme 
for Mobile Crowdsourcing Systems. Sensors, 2016, 16(5): 746. 
 

  
 

89


